31

What is the distribution of the square of a normally distributed random variable $X^2$ with $X\sim N(0,\sigma^2/4)$?
I know $\chi^2(1)=Z^2$ is a valid argument for when squaring a standard normal distribution, but what about the case of non-unit variance?

Richard Hardy
  • 67,272
CodeTrek
  • 609

1 Answers1

42

To close this one:

$$ X\sim N(0,\sigma^2/4) \Rightarrow \frac {X^2}{\sigma^2/4}\sim \mathcal \chi^2_1 \Rightarrow X^2 = \frac {\sigma^2}{4}\mathcal \chi^2_1 = Q\sim \text{Gamma}(1/2, \sigma^2/2)$$

with

$$E(Q) = \frac {\sigma^2}{4},\;\; \text{Var}(Q) = \frac {\sigma^4}{8}$$

RESPONSE TO QUESTION IN THE COMMENT

If $$X\sim N(\mu,\sigma^2/4)$$

then $$\frac {X^2}{\sigma^2/4} \sim \mathcal \chi^2_{1,NC}(\lambda=\mu^2),$$

where $\mathcal \chi^2_{1,NC}(\lambda)$ represents a Non-Central Chi-square with one degree of freedom, and $\lambda$ is the non-centrality parameter. Then

$$X^2 =\frac{\sigma^2}{4} \mathcal \chi^2_{1,NC}(\lambda)$$

can be treated as a version of the Generalized Chi-square.