Alotropia oxigenului

Dioxigenul, oxigenul molecular sau oxigenul gazos (în general denumit simplu oxigen) este o moleculă diatomică compusă din doi atomi de oxigen. Este un gaz (în condiții normale de temperatură și presiune) incolor, inodor și insipid. Există o altă varietate alotropică ale oxigenului, formată din trei atomi: O3, denumit ozon.

Alotropul cel mai comun al oxigenului elemental se numește dioxigen O
2
, și are o lungime a legăturii de 121 pm și o energie de legătură de 498 kJ·mol−1.[1] Aceasta este forma care este utilizată de forme de viață complexe, cum ar fi animalele, în respirația celulară (vezi și rolul biologic) și este forma care are o mare importanță în atmosfera Pământului (vezi răspândire).[2]

În atmosfera terestră înaltă la peste 180 km este prezent oxigenul atomic.

Trioxigenul (O
3
) este cunoscut de obicei sub denumirea de ozon și este un alotrop al oxigenului foarte reactiv, dăunător pentru țesutul pulmonar.[3] Ozonul este produs în atmosfera superioară când O
2
se combină cu oxigenul atomic format prin diviziunea O
2
din cauza radiațiilor ultraviolete (UV).[4] Din moment ce ozonul este un puternic absorbant în regiunea ultravioletă a spectrului electromagnetic, stratul de ozon al atmosferei superioare funcționează ca un scut protector pentru radiațiile care sunt primite de planetă.[4] Totuși, în apropiere de suprafața terestră, este un poluant puternic, format ca produs secundar al gazelor de eșapament.[3] Molecula metastabilă de tetraoxigen (O
4
) fost descoperită în 2001,[5][6] și se presupunea că ar exista în una dintre cele șase faze ale oxigenului solid. S-a demonstrat în anul 2006 că această fază, creată prin presurizarea dioxigenului la 20 GPa, este de fapt un cluster O
8
aparținând sistemului de cristalizare trigonal.[7] Acest cluster are un potențial de agent oxidant mult mai mare decât O
2
sau O
3
, și prin urmare ar putea fi utilizat ca și combustibil pentru rachete.[5][6] În 1990 a fost descoperită o fază metalică a oxigenului solid, când acesta a fost supus unei presiuni mai mari de 96 GPa[8] și în 1998 s-a demonstrat că în condiții de temperatură foarte scăzută, devine un superconductor.[9]

Note

  1. Chieh, Chung. „Bond Lengths and Energies”. University of Waterloo. Arhivat din original la . Accesat în .
  2. „Cellular Respiration”. IUPUI Department of Biology. Arhivat din original la . Accesat în .
  3. Stwertka, Albert (). Guide to the Elements (ed. Revised). Oxford University Press. pp. 48–49. ISBN 0-19-508083-1.
  4. Parks, G. D.; Mellor, J. W. (1939). Mellor's Modern Inorganic Chemistry (6th ed.). London: Longmans, Green and Co.
  5. Cacace, Fulvio; de Petris, Giulia; Troiani, Anna (). „Experimental Detection of Tetraoxygen”. Angewandte Chemie International Edition. 40 (21): 4062–65. doi:10.1002/1521-3773(20011105)40:21<4062::AID-ANIE4062>3.0.CO;2-X. PMID 12404493.
  6. Ball, Phillip (). „New form of oxygen found”. Nature News. Accesat în .
  7. Lundegaard, Lars F.; Weck, Gunnar; McMahon, Malcolm I.; Desgreniers, Serge; Loubeyre, Paul (). „Observation of an O
    8
    molecular lattice in the phase of solid oxygen”
    . Nature. 443 (7108): 201–04. Bibcode:2006Natur.443..201L. doi:10.1038/nature05174. PMID 16971946.
  8. Desgreniers, S; =Vohra, Y. K.; Ruoff, A. L. (). „Optical response of very high density solid oxygen to 132 GPa”. J. Phys. Chem. 94 (3): 1117–22. doi:10.1021/j100366a020.
  9. Shimizu, K.; =Suhara,, K.; Ikumo, M.; Eremets, M. I.; Amaya, K. (). „Superconductivity in oxygen”. Nature. 393 (6687): 767–69. Bibcode:1998Natur.393..767S. doi:10.1038/31656.

Bibliografie

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.