0

Consider a fair roulette game with 18 red numbers, 18 black numbers and 1 green zero.

At each round, the probability of winning by betting on red or black is 18/37, which is 48.6%.

If we play a lot of rounds and count how many sequences of N consecutive colors are drawn, we'll see that there are fewer sequences as N grows.

By this logic, the chance of drawing 10 consecutive reds are lower than drawing 9. But this conflicts with the 48.6% odd.

What am I missing? Why is it not better to bet on black after seen 10 reds?

Schrute
  • 101
  • It is easier to consider it from a physics point of view: The speed of the ball, its weight and elasticity, timing and the speed and elasticity of the turning table determine the number. None of these have either a notion of color nor a memory of former throws. – Bernhard Jun 04 '23 at 18:26

0 Answers0