how is it to explain that ROC illustrates such a perfect classificator however other metrics represent something different?
The evalaution was done on CV of 5.
F1: 0.724770642201835
Precision: 0.797979797979798
Recall: 0.6638655462184874
false positive rate: 0.0007034451224873819
true positive rate: 0.6638655462184874
F1: 0.8571428571428572
Precision: 0.7878787878787878
Recall: 0.9397590361445783
false positive rate: 8.793064031092274e-05
true positive rate: 0.9397590361445783
F1: 0.711111111111111
Precision: 0.6530612244897959
Recall: 0.7804878048780488
false positive rate: 0.00031655030511932187
true positive rate: 0.7804878048780488
F1: 0.8409090909090908
Precision: 0.7551020408163265
Recall: 0.9487179487179487
false positive rate: 7.03445122487382e-05
true positive rate: 0.9487179487179487
F1: 0.7380952380952381
Precision: 0.6326530612244898
Recall: 0.8857142857142857
false positive rate: 0.0001406890244974764
true positive rate: 0.8857142857142857
