I am running what I suppose is the same mixed-effect model with a negative binomial distribution (log link) in both lme4 and the glmmTMB package in R. Code shown below:
mNB<-glmer.nb(size~ scale(Group1) + (1|PairID), weights=w, verbose=T, data=imp.NB)
which gives the warning
boundary (singular) fit: see ?isSingular
and summary
summary(mNB)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: Negative Binomial(0.0515) ( log )
Formula: size ~ scale(Group1) + (1 | PairID)
Data: imp.NB
Weights: w
AIC BIC logLik deviance df.resid
-451160.3 -451137.1 225584.1 -451168.3 2458
Scaled residuals:
Min 1Q Median 3Q Max
17.57 21.73 79.29 218.52 2655.68
Random effects:
Groups Name Variance Std.Dev.
PairID (Intercept) 0 0
Number of obs: 2462, groups: PairID, 183
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.491636 0.007533 -596.276 < 2e-16 ***
scale(Group1) -0.031555 0.007361 -4.287 1.81e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
scale(Grp1) -0.023
convergence code: 0
boundary (singular) fit: see ?isSingular
Meanwhile this gives no complaints and summary
t2NB<-glmmTMB(size~scale(Group1) + (1|PairID), weights=w, family=nbinom2, verbose=T, data=imp.NB, ziformula=~0)
summary(t2NB)
Family: nbinom2 ( log )
Formula: size ~ scale(Group1) + (1 | PairID)
Data: imp.NB
Weights: w
AIC BIC logLik deviance df.resid
86472.4 86495.6 -43232.2 86464.4 2458
Random effects:
Conditional model:
Groups Name Variance Std.Dev.
PairID (Intercept) 0.3382 0.5816
Number of obs: 2462, groups: PairID, 183
Overdispersion parameter for nbinom2 family (): 1.02
Conditional model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.983829 0.046852 42.34 <2e-16 ***
scale(Group1) 0.007061 0.034005 0.21 0.836
I have reason to believe the weights argument causes the singularity as discussed in this post. But I want to know why one converges and not the other? Can I trust the results from glmmTMB?
EDIT
Note: running both models without the weights gives nearly identical results. While running the lme4 model with weights gives 0 variance for the random effect.
Distance. They have been rescaled (1-10). 1 represents observations in habitat with the highest chance of detection, and 10 should give observations in habitat with the lowest chance of detection greater weight. In the case of this species, I think the values go from 3-7. – Nebulloyd Oct 27 '19 at 22:02