Let $X_1,X_2,\ldots,X_n$ be i.i.d variables having a Pareto distribution with density $$f(x)=\frac{a\theta^a}{x^{a+1}}1_{x>\theta}\,,$$ where $a,\theta>0$. What is the distribution of $\sum\limits_{j=1}^n \ln\left(\frac{X_{(j)}}{X_{(1)}}\right)$ ?
Suppose $\mathsf{Gamma}(p,\alpha)$ denotes the density $g(t)\propto e^{-\alpha t}t^{p-1}1_{t>0}$.
We have $$T=\sum_{j=1}^n\ln\left(\frac{X_{(j)}}{X_{(1)}}\right)=\sum_{j=1}^n\ln(X_{(j)})-n\ln(X_{(1)})=\sum_{j=1}^n \ln X_j-n\ln X_{(1)}$$
Now,
\begin{align}&\ln(X_j/\theta)\stackrel{\text{i.i.d}}{\sim}\mathsf{Exp}\text{ with mean }1/a\qquad,\,j=1,\ldots,n \\&\implies\sum_{j=1}^n\ln(X_j/\theta)=\sum_{j=1}^n\ln X_j-n\ln \theta\sim\mathsf{Gamma}(n,a) \end{align}
I could show that $X_{(1)}$ has another Pareto density, so that $$\ln\left(\frac{X_{(1)}}{\theta}\right)=\ln X_{(1)}-\ln \theta \sim \mathsf{Exp}\text{ with mean }1/(na)$$
Not sure if the last two facts help me get the exact distribution of $T$.
Edit:
Turns out this was rather simple had I simply rewritten $T$ as
$$T=\sum_{j=1}^n \ln\left(\frac{X_j}{X_{(1)}}\right)=\sum_{j=1}^n(\ln X_j-\ln X_{(1)})=\sum_{j=1}^n (Y_j-Y_{(1)})\,,$$
where $Y_j=\ln (X_j/\theta)$. Since $aY_j\sim\mathsf{Exp}(1)$, using this result I have $a T\sim \mathsf{Gamma}(n-1,1)$.
This is equivalent to $T\sim \mathsf{Gamma}(n-1,a)$ or $2aT\sim \chi^2_{2n-2}$.