I have fit a linear model to my data, because a (somewhat) linear model would greatly simplify my analysis.
- Requesting second opinion on whether my data plot, as well as my residual plots, imply somewhat linear data as well as normal residuals. i.e. can i get away with using a linear model
- If not, may you recommend a transformation to the data to make it linear
The dataset R code
effective.vpip=c(0.004489674,
0.004489674,
0.004489674,
0.004489674,
0.004489674,
0.004489674,
0.004489674,
0.004302604,
0.00432339,
0.004190362,
0.004634795,
0.004497988,
0.004382229,
0.004717721,
0.00500848,
0.00488252,
0.004859412,
0.004755728,
0.004983275,
0.004883767,
0.004793736,
0.00471189,
0.004901769,
0.004822242,
0.004992517,
0.005149694,
0.005069821,
0.005049101,
0.005188067,
0.005114902,
0.005046458,
0.004982291,
0.005106437,
0.005044281,
0.005159562,
0.005099383,
0.005042456,
0.005148684,
0.005093413,
0.005193056,
0.005139399,
0.005233202,
0.005181107,
0.005269698,
0.005219107,
0.00530302,
0.005253874,
0.005237953,
0.00519214,
0.005269879,
0.00534457,
0.00529935,
0.005255836,
0.005213934,
0.00528421,
0.005351976,
0.005417365,
0.005480498,
0.005438339,
0.005499019,
0.005457939,
0.005516345,
0.005476293,
0.005437494,
0.005399888,
0.005455634,
0.00541888,
0.005405215,
0.00545846,
0.005510184,
0.005474732,
0.005440265,
0.005406743,
0.005374126,
0.005423526,
0.005471626,
0.005439437,
0.0054861,
0.005531581,
0.005575925,
0.005619175,
0.00558715,
0.005555896,
0.005525387,
0.005495595,
0.005483899,
0.005525223,
0.005565608,
0.005536704,
0.005576064,
0.00554768,
0.005586065,
0.005558184,
0.005530896,
0.005568246,
0.005541421,
0.005577892,
0.005613619,
0.00558715,
0.005622069,
0.005656297,
0.005630188,
0.005604585,
0.005579475,
0.005612805,
0.005588091,
0.005620717,
0.005652739,
0.005628339,
0.005604383,
0.005635687,
0.005666431,
0.005642774,
0.005619531,
0.005596693,
0.005626714,
0.005656221,
0.005685229,
0.005662606,
0.005640361,
0.00566878,
0.005696734,
0.005674753,
0.005653127,
0.005680535,
0.005707508,
0.005686134,
0.005665095,
0.005691561,
0.005670803,
0.005696821,
0.005722444,
0.005701923,
0.005681708,
0.005706874,
0.00573167,
0.005711681,
0.005691981,
0.005672565,
0.005696897,
0.005720885,
0.005701675,
0.005725293,
0.00570632,
0.005729581,
0.005752523,
0.005733751,
0.005715233,
0.00573781,
0.005760085,
0.005741761,
0.005763717,
0.005745609,
0.005767255,
0.005788622,
0.005770702,
0.00575301,
0.005774061,
0.005794848,
0.005777337,
0.005797845,
0.0058181,
0.005800769,
0.005820759,
0.005840506,
0.005860016,
0.005879292,
0.005898339,
0.00591716)
The linear model and the residual plots
fit=lm(effective.vpip~c(1:length(effective.vpip)))
plot(fit)
