3

I am given the following forward rate dynamics $df(t,u)=\frac{\partial}{\partial u}(\frac{\sigma^2}{2})dt-\frac{\partial}{\partial u}\sigma dW$ and want to calculate the dynamics of the ZCB $p$ via the computations below. The second equality is clearly Ito lemma but equality three and four throws me off completely, can someone see whats going on?

enter image description here

user123124
  • 307
  • 1
  • 7

1 Answers1

6

The notations in the snapshot are pretty messy. I prefer to proceed as follows.

Let $X_t = -\int_t^T f(t, u)du$. Note that \begin{align*} f(t, u) - f(0, u) = \frac{\partial }{\partial u}\left(\int_0^t \frac{\sigma^2(s, u)}{2} ds - \int_0^t \sigma(s, u) d W_s \right). \end{align*} Then \begin{align*} r_t = f(t, t) = f(0, t) + \frac{\partial }{\partial u}\left(\int_0^t \frac{\sigma^2(s, u)}{2} ds - \int_0^t \sigma(s, u) d W_s \right)\Big|_{u=t}. \end{align*} Moreover, \begin{align*} \int_t^T f(t, u)du - \int_t^T f(0, u)du &= \left(\int_0^t \frac{\sigma^2(s, T)}{2} ds - \int_0^t \sigma(s, T) d W_s \right) \\ &\qquad -\left(\int_0^t \frac{\sigma^2(s, t)}{2} ds - \int_0^t \sigma(s, t) d W_s \right). \end{align*} That is, \begin{align*} X_t &= - \int_t^T f(0, u)du + \left(\int_0^t \frac{\sigma^2(s, t)}{2} ds - \int_0^t \sigma(s, t) d W_s \right) \\ &\qquad\qquad\qquad\qquad - \left(\int_0^t \frac{\sigma^2(s, T)}{2} ds - \int_0^t \sigma(s, T) d W_s \right). \end{align*} Consequently, \begin{align*} dX_t &= f(0, t) dt + \frac{\sigma^2(t, t)}{2} dt - \sigma(t, t) d W_t \\ &\qquad + \frac{\partial }{\partial u}\left(\int_0^t \frac{\sigma^2(s, u)}{2} ds - \int_0^t \sigma(s, u) d W_s \right)\Big|_{u=t} dt -\frac{\sigma^2(t, T)}{2} dt + \sigma(t, T) d W_t\\ &= r_t dt -\frac{\sigma^2(t, T)}{2} dt + \sigma(t, T) d W_t. \end{align*} Therefore, \begin{align*} dP(t, T) &= d\big(e^{X_t} \big)\\ &=P(t, T)\Big(dX_t + \frac{1}{2} d\langle X, X\rangle_t \Big)\\ &=P(t, T)\big(r_t dt + \sigma(t, T) d W_t \big). \end{align*}

Gordon
  • 21,114
  • 1
  • 35
  • 80
  • I dont quite understand the first equality for $dX$ where does then $\frac{\partial}{\partial u}$-term come from? – user123124 Oct 31 '19 at 18:03
  • Look at the second term $\left(\int_0^t \frac{\sigma^2(s, t)}{2} ds - \int_0^t \sigma(s, t) d W_s \right)$ in $X_t$, there is one $t$ in the integral limit and another $t$ in the integrand. The differential $\frac{\partial}{\partial u}$, and evaluated at $t$, is for the $t$ in the integrand. – Gordon Oct 31 '19 at 18:09
  • right, thats kind of odd.., how do you interpret that, some kind of chain rule? – user123124 Oct 31 '19 at 18:15
  • You need to check the calculus book. How do you calculate the differential $\frac{d}{dx}\left(\int_{a(x)}^{b(x)} g(x, y) dy\right)$? – Gordon Oct 31 '19 at 18:24