Consider the following variant of the Collatz function: $f:\mathbb N\rightarrow\mathbb N$ is defined by \begin{equation} f(n):=\begin{cases} n/2 & \text{if $n$ is even}\\ 5n+1 & \text{if $n$ is odd}\\ \end{cases} \end{equation} Contrary to the Collatz function with $3n+1$, many orbits of this function seem to diverge. The smallest one is probably 7. After 32282 iterations, $f^k(7)$ is already larger than $10^{1000}$. Can one prove that this orbit diverges to infinity?
Here is the Python code that I used:
from decimal import *
getcontext().prec=1001
def collatz5(n):
if n%2 == 0:
return Decimal(n)/Decimal(2)
else:
return Decimal(5)*Decimal(n)+Decimal(1)
n=7
for i in range(100000):
if n>10**1000:
print("bound exceeded")
print("number of steps: ",i)
break
n=collatz5(n)