Norm (abelian group)

In mathematics, specifically abstract algebra, if is an (abelian) group with identity element then is said to be a norm on if:

  1. Positive definiteness: ,
  2. Subadditivity: ,
  3. Inversion (Symmetry): .[1][2]:§5 & §10.1

An alternative, stronger definition of a norm on requires

  1. ,
  2. ,
  3. .[3][4]:§3.10

The norm is discrete if there is some real number such that whenever .

Free abelian groups

An abelian group is a free abelian group if and only if it has a discrete norm.[3][4]:Th. 3.10.3

References

  1. Bingham, N.H.; Ostaszewski, A.J. (2010). "Normed versus topological groups: Dichotomy and duality". Dissertationes Mathematicae. 472: 4. doi:10.4064/dm472-0-1.
  2. Deza, Michel; Deza, Elena (2016). Encyclopedia of Distances (4 ed.). Berlin, Heidelberg: Springer. ISBN 978-3-662-52844-0.
  3. 1 2 Steprāns, Juris (1985), "A characterization of free abelian groups", Proceedings of the American Mathematical Society, 93 (2): 347–349, doi:10.2307/2044776, JSTOR 2044776, MR 0770551
  4. 1 2 Fuchs, László (2015). Abelian Groups (1st ed.). Cham: Springer. ISBN 978-3-319-19422-6.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.