Conway triangle notation

In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. However, though the notation was promoted by Conway, a much earlier reference to the notation goes back to the Spanish nineteenth century mathematician gl:Juan Jacobo Durán Loriga.[1]

Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:

where S = 2 × area of reference triangle and

[2][3]

in particular

     where is the Brocard angle. The law of cosines is used: .
   for values of     where  

Furthermore the convention uses a shorthand notation for and

Hence:

Some important identities:

where R is the circumradius and abc = 2SR and where r is the incenter,      and  

Some useful trigonometric conversions:


Some useful formulas:

Some examples using Conway triangle notation:

Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula:

[4]

Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:

For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a

Hence:

This gives:

[5]

References

  1. Loriga, Juan Jacobo Durán, "Nota sobre el triángulo", en El Progreso Matemático, tomo IV (1894), pages 313-316., Periodico de Matematicas Puras y Aplicadas.
  2. Yiu, Paul (2002), "Notation." §3.4.1 in Introduction to the Geometry of the Triangle. pp. 33-34, Version 2.0402, April 2002 (PDF), Department of Mathematics Florida Atlantic University, pp. 33–34.
  3. Kimberling, Clark, Encyclopedia of Triangle Centers - ETC, Part 1 "Introduced on November 1, 2011: Combos" Note 6, University of Evansville.
  4. Yiu, Paul (2002), "The distance formula" §7.1 in Introduction to the Geometry of the Triangle. p. 87, Version 2.0402, April 2002 (PDF), Department of Mathematics Florida Atlantic University, p. 87.
  5. Weisstein, Eric W. "Orthocenter §(14)". MathWorld.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.