Layer group

In mathematics, a layer group is a three-dimensional extension of a wallpaper group, with reflections in the third dimension. It is a space group with a two-dimensional lattice, meaning that it is symmetric over repeats in the two lattice directions. The symmetry group at each lattice point is an axial crystallographic point group with the main axis being perpendicular to the lattice plane.

Table of the 80 layer groups, organized by crystal system or lattice type, and by their point groups[1][2]

Triclinic
1 p1 2 p1
Monoclinic/inclined
3 p112 4 p11m 5 p11a 6 p112/m 7 p112/a
Monoclinic/orthogonal
8 p211 9 p2111 10 c211 11 pm11 12 pb11
13 cm11 14 p2/m11 15 p21/m11 16 p2/b11 17 p21/b11
18 c2/m11
Orthorhombic
19 p222 20 p2122 21 p21212 22 c222 23 pmm2
24 pma2 25 pba2 26 cmm2 27 pm2m 28 pm21b
29 pb21m 30 pb2b 31 pm2a 32 pm21n 33 pb21a
34 pb2n 35 cm2m 36 cm2e 37 pmmm 38 pmaa
39 pban 40 pmam 41 pmma 42 pman 43 pbaa
44 pbam 45 pbma 46 pmmn 47 cmmm 48 cmme
Tetragonal
49 p4 50 p4 51 p4/m 52 p4/n 53 p422
54 p4212 55 p4mm 56 p4bm 57 p42m 58 p421m
59 p4m2 60 p4b2 61 p4/mmm 62 p4/nbm 63 p4/mbm
64 p4/nmm
Trigonal
65 p3 66 p3 67 p312 68 p321 69 p3m1
70 p31m 71 p31m 72 p3m1
Hexagonal
73 p6 74 p6 75 p6/m 76 p622 77 p6mm
78 p6m2 79 p62m 80 p6/mmm

Correspondence Between Layer Groups and Plane Groups

The surjective mapping from a layer group to a wallpaper group (plane group) can be obtained by disregarding symmetry elements along the stacking direction, typically denoted as the z-axis, and aligning the remaining elements with those of the plane groups.[3] The resulting surjective mapping provides a direct correspondence between layer groups and plane groups (wallpaper groups).

Surjective mapping from Layer Groups to Plane Groups
#Layer Group#Plane Group
1p11p1
2p12p2
3p1122p2
4p11m1p1
5p11a1p1
6p112/m2p2
7p112/a2p2
8p2113pm
9p21114pg
10c2115cm
11pm113pm
12pb114pg
13cm115cm
14p2/m116p2mm
15p21/m117p2mg
16p2/b117p2mg
17p21/b118p2gg
18c2/m119c2mm
19p2226p2mm
20p21227p2mg
21p212128p2gg
22c2229c2mm
23pmm26p2mm
24pma27p2mg
25pba28p2gg
26cmm29c2mm
27pm2m3pm
28pm21b3pm
29pb21m4pg
30pb2b3pm
31pm2a3pm
32pm21n4pg
33pb21a4pg
34pb2n5cm
35cm2m5cm
36cm2e3pm
37pmmm6p2mm
38pmaa6p2mm
39pban10p4
40pmam7p2mg
41pmma6p2mm
42pman9c2mm
43pbaa7p2mg
44pbam8p2gg
45pbma7p2mg
46pmmn10p4
47cmmm9c2mm
48cmme6p2mm
49p410p4
50p410p4
51p4/m10p4
52p4/n12p4gm
53p42211p4mm
54p421212p4gm
55p4mm11p4mm
56p4bm12p4gm
57p42m11p4mm
58p421m12p4gm
59p4m211p4mm
60p4b212p4gm
61p4/mmm11p4mm
62p4/nbm11p4mm
63p4/mbm12p4gm
64p4/nmm11p4mm
65p313p3
66p316p6
67p31214p3m1
68p32115p31m
69p3m114p3m1
70p31m15p31m
71p31m17p6mm
72p3m117p6mm
73p616p6
74p613p3
75p6/m16p6
76p62217p6mm
77p6mm17p6mm
78p6m214p3m1
79p62m15p31m
80p6/mmm17p6mm

See also

References

  1. Kopsky, V.; Litvin, D.B., eds. (2002). International Tables for Crystallography, Volume E: Subperiodic Groups. Vol. E (5th ed.). Berlin, New York: Springer-Verlag. doi:10.1107/97809553602060000105. ISBN 978-1-4020-0715-6.
  2. Hitzer, E.S.M.; Ichikawa, D. (17–19 Aug 2008). "Representation of crystallographic subperiodic groups by geometric algebra". Electronic Proc. of AGACSE (3). Leipzig, Germany. arXiv:1306.1280. Bibcode:2013arXiv1306.1280H.
  3. Sze, W.H.R.; Xi, B.; Zhu, J. (2025). "Key difference of input data organization to the predictions of symmetry information and layer number for quasi-2D films from band structure". Computational Condensed Matter. 42: e01009. doi:10.1016/j.cocom.2025.e01009. ISSN 2352-2143.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.