10

I have a long polynomial:

\documentclass{article}
%\usepackage{amsmath}% Loaded by mathtools
\usepackage{mathtools}
\begin{document}
$ f(z)=\frac{1}{382112640}(-306772802511648469920\eta^4z^4+762453974480763801600\eta^5z^4-1678626210368271790080\eta^5z^3-28510918043555533736160\eta^4z^3+11443138641451067779872\eta^3z^3-52164076923190540413504\eta^2z^2-78145258181161076156160\eta^5z^2-211306163712129371808450\eta^4z^2+228927087397104405937944\eta^3z^2+999881065017543109136462\eta^3z-317254092617698017425280\eta^5z-443761561344388063474665\eta^4z+82327155732241730770824\eta z-514623285385260545505123\eta^2z-1010535343560043404912120\eta^2-357788302700438191196160\eta^5-43808044579418934376632-214023244873618345872240\eta^4+11818373349781028\\
079\eta^3+347370177721463765064153\eta)/((417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001))$
\end{document}

How do I format such a long polynomial correctly?

Nick
  • 415
  • 6
    For anyone reaching this question in the future, I would strongly recommend writing a simple summation formula with coefficients $a_{i,j}$ and then adding a table to show the values. – Mefitico Apr 05 '19 at 11:59
  • 1
    @Mefitico It is a nice option! Why don't you post an answer? –  Apr 05 '19 at 12:12
  • 1
    @JouleV: Because it wouldn't answer the question. Ever heard of the patient who went to the doctor and said: "It hurts when I do this", to which the doctor responded: "Then don't do this!" – Mefitico Apr 05 '19 at 12:19
  • @Mefitico No, it is still an appropriate expression of the equation, in my opinion. You can see that my answer and egreg's answer use indirect expressions, and you are talking about an indirect expression. –  Apr 05 '19 at 12:23

7 Answers7

14

I would use something like this

\documentclass{article}
%\usepackage{amsmath}% Loaded by mathtools
\usepackage{mathtools}
\begin{document}
Blah blah
\[f(z)=\frac{1}{382112640}\cdot\frac{A}{B}\]
where
\begin{align*}
    A=&\,-306772802511648469920\eta^4z^4+762453974480763801600\eta^5z^4\\
    &\,-1678626210368271790080\eta^5z^3-28510918043555533736160\eta^4z^3\\
    &\,+11443138641451067779872\eta^3z^3-52164076923190540413504\eta^2z^2\\
    &\,-78145258181161076156160\eta^5z^2-211306163712129371808450\eta^4z^2\\
    &\,+228927087397104405937944\eta^3z^2+999881065017543109136462\eta^3z\\
    &\,-317254092617698017425280\eta^5z-443761561344388063474665\eta^4z\\
    &\,+82327155732241730770824\eta z-514623285385260545505123\eta^2z\\
    &\,-1010535343560043404912120\eta^2-357788302700438191196160\eta^5\\
    &\,-43808044579418934376632-214023244873618345872240\eta^4\\
    &\,+11818373349781028079\eta^3+347370177721463765064153\eta
\end{align*}
and
\[B=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)\]
\end{document}

enter image description here

11

I suggest something line the following, so the wide terms are reduced.

\documentclass{article}
%\usepackage{amsmath}% Loaded by mathtools
\usepackage{mathtools}

\begin{document}

\begin{gather*}
\begin{align*}
g(\eta,z)&=
\parbox[t]{0.85\displaywidth}{\raggedright
$-306772802511648469920\eta^4z^4+
762453974480763801600\eta^5z^4-
1678626210368271790080\eta^5z^3-
28510918043555533736160\eta^4z^3+
11443138641451067779872\eta^3z^3-
52164076923190540413504\eta^2z^2-
78145258181161076156160\eta^5z^2-
211306163712129371808450\eta^4z^2+
228927087397104405937944\eta^3z^2+
999881065017543109136462\eta^3z-
317254092617698017425280\eta^5z-
443761561344388063474665\eta^4z+
82327155732241730770824\eta z-
514623285385260545505123\eta^2z-
1010535343560043404912120\eta^2-
357788302700438191196160\eta^5-
43808044579418934376632-
214023244873618345872240\eta^4+
11818373349781028079\eta^3+
347370177721463765064153\eta$
}
\\[2ex]
h(z)&=(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)
\end{align*}
\\[2ex]
f(z)=\frac{1}{382112640}\frac{g(\eta,z)}{h(z)}
\end{gather*}

\end{document}

enter image description here

egreg
  • 1,121,712
9

Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:

where:

Code:

$$ f(z)=\frac{1}{382,112,640} \; \frac{g(\eta, z)}{u(z) \, v(z) \, w(z) } $$

where

$$
\begin{array}{ll}
  g(\eta, z) = 
  \begin{bmatrix} 
    \begin{array}{r @{\hspace{0em}} r}
      - & 306,772,802,511,648,469,920 \\
        & 762,453,974,480,763,801,600 \\
      - & 1,678,626,210,368,271,790,080 \\
      - & 28,510,918,043,555,533,736,160 \\
       & 11,443,138,641,451,067,779,872 \\
      - & 52,164,076,923,190,540,413,504 \\
      - & 78,145,258,181,161,076,156,160 \\
      - & 211,306,163,712,129,371,808,450 \\
       & 228,927,087,397,104,405,937,944 \\
       & 999,881,065,017,543,109,136,462 \\
      - & 317,254,092,617,698,017,425,280 \\
      - & 443,761,561,344,388,063,474,665 \\
       & 82,327,155,732,241,730,770,824 \\
      - & 514,623,285,385,260,545,505,123 \\
      - & 1,010,535,343,560,043,404,912,120 \\
      - & 357,788,302,700,438,191,196,160 \\
      - & 43,808,044,579,418,934,376,632 \\
      - & 214,023,244,873,618,345,872,240 \\
       & 11,818,373,349,781,028,079 \\
       & 347,370,177,721,463,765,064,153
    \end{array}
  \end{bmatrix}^T
  \begin{bmatrix}
    \begin{array}{l}
      \eta^4z^4 \\
      \eta^5z^4 \\
      \eta^5z^3 \\
      \eta^4z^3 \\
      \eta^3z^3 \\
      \eta^2z^2 \\
      \eta^5z^2 \\
      \eta^4z^2 \\
      \eta^3z^2 \\
      \eta^3z \\
      \eta^5z \\
      \eta^4z \\
      \eta z \\
      \eta^2z \\
      \eta^2 \\
      \eta^5 \\
      1 \\
      \eta^4 \\
      \eta^3 \\
      \eta
    \end{array}
  \end{bmatrix}
  & 
  \begin{array}{l}
    u(z) = \begin{bmatrix} \begin{array}{r @{\hspace{0em}} r} & 417,420 \\ - & 4,169,121 \\ - & 15,571,312 \end{array}\end{bmatrix}^T \begin{bmatrix} \begin{array}{l} z^2 \\ z \\ 1 \end{array}\end{bmatrix}\\[3em]
    v(z) = \begin{bmatrix} \begin{array}{r @{\hspace{0em}} r}  & 1,546 \\ & 3,537 \end{array}\end{bmatrix}^T \begin{bmatrix}\begin{array}{l} z \\ 1 \end{array}\end{bmatrix}\\[3em]
    w(z) = \begin{bmatrix}\begin{array}{r @{\hspace{0em}} r}  & 3,092 \\ & 17,001 \end{array}\end{bmatrix}^T \begin{bmatrix}\begin{array}{l} z \\ 1 \end{array}\end{bmatrix} \\[3em]
  \end{array}
\end{array}
$$

PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.

6

or

enter image description here

\documentclass{article}
%\usepackage{amsmath}% Loaded by mathtools
\usepackage{mathtools, nccmath}
\begin{document}
    \begin{multline*}\medmath
f(z)=\frac{1}{382112640}
    \frac{\left[
    \begin{multlined}
    -306772802511648469920\eta^4z^4+762453974480763801600\eta^5z^4-\\
    1678626210368271790080\eta^5z^3-28510918043555533736160\eta^4z^3+\\
    11443138641451067779872\eta^3z^3-52164076923190540413504\eta^2z^2-\\
    78145258181161076156160\eta^5z^2-211306163712129371808450\eta^4z^2+\\
    228927087397104405937944\eta^3z^2+999881065017543109136462\eta^3z-\\
    317254092617698017425280\eta^5z-443761561344388063474665\eta^4z+\\
    82327155732241730770824\eta z - 514623285385260545505123\eta^2z-\\
    1010535343560043404912120\eta^2-357788302700438191196160\eta^5-\\
    43808044579418934376632-214023244873618345872240\eta^4+\\
    11818373349781028079\eta^3+347370177721463765064153\eta
    \end{multlined}\right]}
    {(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
    \end{multline*}
Zarko
  • 296,517
2

I recommend aligning the variables and adding some form of thousand-separators, both will enhance the readability. What I also recommend (but didn't do here) is sorting by the powers of the first and then the second variable. This is a modification of JuleV's answer.

\documentclass{article}
%\usepackage{amsmath}% Loaded by mathtools
\usepackage{mathtools}
\begin{document}
Blah blah
\[f(z)=\frac{1}{382112640}\cdot\frac{A}{B}\]
where
\[
\arraycolsep=0.5pt
\begin{array}{rrllrll}
    A=&\,      -306\,772\,802\,511\,648\,469\,920 &\eta^4 &z^4 &      +762\,453\,974\,480\,763\,801\,600 &\eta^5 &z^4\\
    &\,     -1\,678\,626\,210\,368\,271\,790\,080 &\eta^5 &z^3 &  -2\,8510\,918\,043\,555\,533\,736\,160 &\eta^4 &z^3\\
    &\,    +11\,443\,138\,641\,451\,067\,779\,872 &\eta^3 &z^3 &  -5\,2164\,076\,923\,190\,540\,413\,504 &\eta^2 &z^2\\
    &\,    -78\,145\,258\,181\,161\,076\,156\,160 &\eta^5 &z^2 & -21\,1306\,163\,712\,129\,371\,808\,450 &\eta^4 &z^2\\
    &\,   +228\,927\,087\,397\,104\,405\,937\,944 &\eta^3 &z^2 & +99\,9881\,065\,017\,543\,109\,136\,462 &\eta^3 &z\\
    &\,   -317\,254\,092\,617\,698\,017\,425\,280 &\eta^5 &z   & -44\,3761\,561\,344\,388\,063\,474\,665 &\eta^4 &z\\
    &\,    +82\,327\,155\,732\,241\,730\,770\,824 &\eta   &z   & -51\,4623\,285\,385\,260\,545\,505\,123 &\eta^2 &z\\
    &\,-1\,010\,535\,343\,560\,043\,404\,912\,120 &\eta^2 &    & -35\,7788\,302\,700\,438\,191\,196\,160 &\eta^5 &\\
    &\,    -43\,808\,044\,579\,418\,934\,376\,632 &       &    & -21\,4023\,244\,873\,618\,345\,872\,240 &\eta^4 &\\
    &\,         +11\,818\,373\,349\,781\,028\,079 &\eta^3 &    & +34\,7370\,177\,721\,463\,765\,064\,153 &\eta   &
\end{array}
\]
and
\[B=(417\,420z^2-4\,169\,121z-15\,571\,312)(1\,546z+3\,537)(3\,092z+17\,001)\]
\end{document}

I'm sure there are also some custom packages that can do this for you but this is just using the packages you provided:

enter image description here

flawr
  • 1,123
  • 1
  • 9
  • 19
0

Following the original disposition of the function, but using alignat, parenthesis, and fractions to emphasize its different terms.

\documentclass{article}

\usepackage{mathtools}

\begin{document}

\begin{alignat*}{2}
& f(z) && = \frac{1}{382112640} \times \left( \vphantom{\frac{1}{382112640}} -306772802511648469920 \eta^4 z^4 + 762453974480763801600 \eta^5 z^4 \right. \\[1.5ex] 
& && -1678626210368271790080 \eta^5 z^3 -28510918043555533736160 \eta^4 z^3 \\[1.5ex]
& && +11443138641451067779872 \eta^3 z^3 -52164076923190540413504 \eta^2 z^2 \\[1.5ex]
& && -78145258181161076156160 \eta^5 z^2 -211306163712129371808450 \eta^4 z^2 \\[1.5ex]
& && +228927087397104405937944 \eta^3 z^2 +999881065017543109136462 \eta^3 z \\[1.5ex]
& && -317254092617698017425280 \eta^5 z -443761561344388063474665 \eta^4 z \\[1.5ex]
& && +82327155732241730770824 \eta z -514623285385260545505123 \eta^2 z \\[1.5ex]
& && -1010535343560043404912120 \eta^2 -357788302700438191196160 \eta^5 \\[1.5ex]
& && -43808044579418934376632 -214023244873618345872240 \eta^4 \\[1.5ex]
& && +11818373349781028079 \eta^3 +347370177721463765064153\eta \left. \vphantom{\frac{1}{382112640}} \right) \\[1.5ex]
& && \times \frac{1}{(417420z^2-4169121z-15571312)(1546z+3537)(3092z+17001)}
\end{alignat*}

\end{document}

fig

Andre
  • 969
  • Do you think this fits the page margin? –  Apr 05 '19 at 09:14
  • It fitted for me. An alternative is to add \ to the last line to bring the last multiplication and fraction to an additional line. – Andre Apr 05 '19 at 09:22
  • In the original question, the term 417420z^2-4169121z-15571312 is in denominator, not in the numerator as you place it. – quark67 Apr 07 '19 at 00:32
  • OK. I will revise this. – Andre Apr 07 '19 at 08:37
  • Revised the members of the last fraction. Also added a line for the last term (which also ensures that the display will fit the margins). – Andre Apr 07 '19 at 10:12
0

I would usually use the package breqn. That automatically line-breaks equations, and has a lot of very nice features, but uses low-level having into the maths primitives, which means it tends to make a mess of other packages what do the same thing (for example, you can't use both breqn and sansmath in the same document)

\begin{dmath*}
f(z)=\frac{1}{382112640}\times-306772802511648469920\eta^4z^4+\left(762453974480763801600\eta^5z^4-1678626210368271790080\eta^5z^3-28510918043555533736160\eta^4z^3+11443138641451067779872\eta^3z^3-52164076923190540413504\eta^2z^2-78145258181161076156160\eta^5z^2-211306163712129371808450\eta^4z^2+228927087397104405937944\eta^3z^2+999881065017543109136462\eta^3z-317254092617698017425280\eta^5z-443761561344388063474665\eta^4z+82327155732241730770824\eta z-514623285385260545505123\eta^2z-1010535343560043404912120\eta^2-357788302700438191196160\eta^5-43808044579418934376632-214023244873618345872240\eta^4+11818373349781028079\eta^3+347370177721463765064153\eta\right)\times\left(\left(417420z^2-4169121z-15571312\right)\left(1546z+3537\right)\left(3092z+17001\right)\right)^{-1}
\end{dmath*}

which produces this huge equation

IMO the right-alignment is ugly but apparently that's the AMS standard - without the brackets it left aligns all those lines like the alginat version.

Philip
  • 208