Given the nature of the operations, you can probably express this in a tidy manner using matrix multiplication notation, eg:

where:

Code:
$$ f(z)=\frac{1}{382,112,640} \; \frac{g(\eta, z)}{u(z) \, v(z) \, w(z) } $$
where
$$
\begin{array}{ll}
g(\eta, z) =
\begin{bmatrix}
\begin{array}{r @{\hspace{0em}} r}
- & 306,772,802,511,648,469,920 \\
& 762,453,974,480,763,801,600 \\
- & 1,678,626,210,368,271,790,080 \\
- & 28,510,918,043,555,533,736,160 \\
& 11,443,138,641,451,067,779,872 \\
- & 52,164,076,923,190,540,413,504 \\
- & 78,145,258,181,161,076,156,160 \\
- & 211,306,163,712,129,371,808,450 \\
& 228,927,087,397,104,405,937,944 \\
& 999,881,065,017,543,109,136,462 \\
- & 317,254,092,617,698,017,425,280 \\
- & 443,761,561,344,388,063,474,665 \\
& 82,327,155,732,241,730,770,824 \\
- & 514,623,285,385,260,545,505,123 \\
- & 1,010,535,343,560,043,404,912,120 \\
- & 357,788,302,700,438,191,196,160 \\
- & 43,808,044,579,418,934,376,632 \\
- & 214,023,244,873,618,345,872,240 \\
& 11,818,373,349,781,028,079 \\
& 347,370,177,721,463,765,064,153
\end{array}
\end{bmatrix}^T
\begin{bmatrix}
\begin{array}{l}
\eta^4z^4 \\
\eta^5z^4 \\
\eta^5z^3 \\
\eta^4z^3 \\
\eta^3z^3 \\
\eta^2z^2 \\
\eta^5z^2 \\
\eta^4z^2 \\
\eta^3z^2 \\
\eta^3z \\
\eta^5z \\
\eta^4z \\
\eta z \\
\eta^2z \\
\eta^2 \\
\eta^5 \\
1 \\
\eta^4 \\
\eta^3 \\
\eta
\end{array}
\end{bmatrix}
&
\begin{array}{l}
u(z) = \begin{bmatrix} \begin{array}{r @{\hspace{0em}} r} & 417,420 \\ - & 4,169,121 \\ - & 15,571,312 \end{array}\end{bmatrix}^T \begin{bmatrix} \begin{array}{l} z^2 \\ z \\ 1 \end{array}\end{bmatrix}\\[3em]
v(z) = \begin{bmatrix} \begin{array}{r @{\hspace{0em}} r} & 1,546 \\ & 3,537 \end{array}\end{bmatrix}^T \begin{bmatrix}\begin{array}{l} z \\ 1 \end{array}\end{bmatrix}\\[3em]
w(z) = \begin{bmatrix}\begin{array}{r @{\hspace{0em}} r} & 3,092 \\ & 17,001 \end{array}\end{bmatrix}^T \begin{bmatrix}\begin{array}{l} z \\ 1 \end{array}\end{bmatrix} \\[3em]
\end{array}
\end{array}
$$
PS. Having said that, given the nature of the numbers involved, I would also agree with Mefitico's point of view in the comments, i.e. it's best to create a variable with indices and express via a cleaner expression, and then refer to a table mapping those indices to the actual numbers involved.