In the one-dimensional case, if $X$ is $\mathcal{N}(\mu,\sigma^2)$, then $Y =\alpha X + \beta $ is $\mathcal{N}(\alpha \mu + \beta,\alpha^2\sigma^2)$ . We can prove this using the cumulative distribution function of of $Y$
$F_Y(a) = P\{Y \leq a\} = P\{\alpha X + \beta \leq a\} = P\{X \leq (a-\beta)/\alpha\}$.
Substituting $Y =\alpha X + \beta $ and change of variable gives us,
$F_Y(a) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}(\alpha\sigma)} \exp \{ \frac{-(v-(\alpha \mu + \beta))^2}{2(\alpha\sigma)^2}\} dv $
Hence $f_Y(v) = \frac{1}{\sqrt{2\pi}(\alpha\sigma)} \exp \{ \frac{-(v-(\alpha \mu + \beta))^2}{2(\alpha\sigma)^2}\} $
Thus $Y$ is $\mathcal{N}(\alpha \mu + \beta, \alpha^2 \sigma^2)$.
In the multivariate case, if $X$ is $\mathcal{N}(\mu,\Sigma)$ and $Y=\alpha X + \beta$, is $Y \sim \mathcal{N}(\alpha \mu + \beta,\alpha^2\Sigma)$? If so, how do we prove it?
\expwill get $\exp$ to render properly. – cardinal Apr 25 '11 at 13:22