Following what is suggested here https://stackoverflow.com/questions/7157158/fitting-a-zero-inflated-poisson-distribution-in-r
> stat
x N
1: 0 478
2: 1 901
3: 2 1101
4: 3 873
5: 4 583
6: 5 250
7: 6 97
8: 7 31
9: 8 10
10: 9 2
# vect <- rep(stat$x, stat$N)
count <- c(478, 901, 1101, 873, 583, 250, 97, 31, 10, 2)
vect <- rep(0:9, count)
library(fitdistrplus)
library(gamlss)
fit <- fitdist(vect, "ZIP", start=list(mu=2.4, sigma=0.1))
# mu = 2.64, sigma = -0.14, log = TRUE): sigma must be between 0 and 1
The plots are from regular poisson fit. As I see there are more zeroes, and gof is 0.00087, so I hope ZIP could help.

However, if I use zeroinfl from pscl
summary(zeroinfl(x ~ 1, dist="poisson", data=data.frame(x=vect))
Pearson residuals:
Min 1Q Median 3Q Max
-1.4945 -0.8607 -0.2269 0.4069 4.2096
Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.88120 0.01134 77.73 <2e-16 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.7452 0.2597 -14.42 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Number of iterations in BFGS optimization: 10
Log-likelihood: -7853 on 2 Df
mu = exp(0.8812) = 2.41
zero = logit(-3.7452, inverse=T)=0.02308537
fitdist/ZIPallow the zero-inflation parameter to go negative, but the results seem sensible. (In contrast,pscl::zeroinflfits the zero-inflation probability on the logit scale, so it can't go negative. – Ben Bolker Jan 02 '14 at 15:16