For any $N$ numbers $y_1,y_2, \ldots, y_N$ with mean
$\displaystyle \bar{y} = \frac{1}{N}\sum_{i=1}^N y_i$, the variance is given by
$$\begin{align}
\sigma^2 &= \frac{1}{N-1}\sum_{i=1}^N (y_i-\bar{y})^2\\
&= \frac{1}{N-1}\sum_{i=1}^N \left(y_i^2 - 2y_i\bar{y} + \bar{y}^2\right)\\
&= \frac{1}{N-1}\left[\left(\sum_{i=1}^Ny_i^2\right) - 2N(\bar{y})^2
+ N(\bar{y})^2 \right] \\
\sigma^2 &=\frac{1}{N-1}\sum_{i=1}^N \left(y_i^2 - (\bar{y})^2\right) \tag{1}
\end{align}$$
Applying $(1)$ to the given set of $n$ numbers $x_1, x_2, \ldots x_n$
which we take for convenience in exposition to have mean $\bar{x} = 0$,
we have that
$$\sigma^2 = \frac{1}{n-1}\sum_{i=1}^n \left(x_i^2-(\bar{x})^2\right)
= \frac{1}{n-1}\sum_{i=1}^n x_i^2$$
If we now add in a new observation $x_{n+1}$ to this data set, then the new mean of
the data set is
$$\frac{1}{n+1}\sum_{i=1}^{n+1}x_i
= \frac{n\bar{x} + x_{n+1}}{n+1} = \frac{x_{n+1}}{n+1}$$
while the new variance is
$$\begin{align}
\hat{\sigma}^2 &= \frac{1}{n}\sum_{i=1}^{n+1} \left(x_i^2-\frac{x_{n+1}^2}{(n+1)^2}\right)\\
&= \frac{1}{n}\left[\left((n-1)\sigma^2 + x_{n+1}^2\right)
- \frac{x_{n+1}^2}{n+1}\right]\\
&= \left.\left.\frac{1}{n}\right[(n-1)\sigma^2 + \frac{n}{n+1}x_{n+1}^2\right]\\
&> \sigma^2 ~ \text{only if}~ x_{n+1}^2 > \frac{n+1}{n}\sigma^2.
\end{align}$$
So $|x_{n+1}|$ needs to be larger than $\displaystyle\sigma\sqrt{1+\frac{1}{n}}$
or, more generally, $x_{n+1}$ needs to
differ from the mean $\bar{x}$ of the original data
set by more than $\displaystyle\sigma\sqrt{1+\frac{1}{n}}$, in order for
the augmented data set to have larger variance than the original data set.
See also Ray Koopman's answer which points out that the new variance is larger
than, equal to, or smaller than, the original variance according as $x_{n+1}$
differs from the mean by more than, exactly, or less than $\displaystyle\sigma\sqrt{1+\frac{1}{n}}$.