I conducted a glm.nb by
glm1<-glm.nb(x~factor(group))
with group being a categorial and x being a metrical variable. When I try to get the summary of the results, I get slightly different results, depending on if I use summary() or summary.glm. summary(glm1) gives me
...
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1044 0.1519 0.687 0.4921
factor(gruppe)2 0.1580 0.2117 0.746 0.4555
factor(gruppe)3 0.3531 0.2085 1.693 0.0904 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(0.7109) family taken to be 1)
whereas summary.glm(glm1) gives me
...
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1044 0.1481 0.705 0.4817
factor(gruppe)2 0.1580 0.2065 0.765 0.4447
factor(gruppe)3 0.3531 0.2033 1.737 0.0835 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(0.7109) family taken to be 0.9509067)
I understand the meaning of the dispersion parameter, but not of the line
(Dispersion parameter for Negative Binomial(0.7109) family taken to be 0.9509067).
In the handbook it says, it would be the estimated dispersion, but it seems to be a bad estimate, as 0.95 is not close to 0.7109, or is the estimated dispersion something different than the estimated dispersion parameter?
I guess, I have to set the dispersion in the summary.nb(x, dispersion=) to something, but I'm not sure, if I have to set the dispersion to 1 (which will yield the same result as summary() or if I should insert an estimate of the dispersion parameter, in this case leading to summary.nb(glm1, dispersion=0.7109) or something else? Or am I fine with just using the summary(glm1)?