May I use Fisher information for constructing confidence interval for MLE variance estimator?
Fisher information should be: $I(\theta) = E[I_0(\theta,Y)] = E\left[ \frac{m}{2(\sigma^2)^2} \right] = \frac{m}{2(\sigma^2)^2}$
Variance of estimated parametr is : $V(\hat{\theta}) = I(\theta)^{-1} = \frac{2(\sigma^2)^2}{m}$
Supposing the sample size is large enough, may I use following equation for 95% CI? $$ \sigma^2 \in \hat{\theta} \pm z_{\frac{\alpha}{2}} \sqrt{V(\hat{\theta})} $$