0

I am fitting a very simple model where group, time and id are factors:

> model <- afex::lmer(depvar ~ group * time + (1 | id), data = df)

> model Linear mixed model fit by REML ['lmerModLmerTest'] Formula: depvar ~ group * time + (1 | id) Data: df REML criterion at convergence: 684.9437 Random effects: Groups Name Std.Dev. id (Intercept) 26.95
Residual 10.71
Number of obs: 84, groups: dSubjects, 28 Fixed Effects: (Intercept) groupA time2 time3 groupA:time2 groupA:time3
104.286 -11.643 -10.071 -5.214 3.643 -10.500

> anova(model) Type III Analysis of Variance Table with Satterthwaite's method Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
group 203.53 203.53 1 26 1.7758 0.194229
time 1703.02 851.51 2 52 7.4292 0.001452 ** group:time 754.93 377.46 2 52 3.2933 0.045013 *


Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

When I use emmeans to calculate the marginal means, I obtain exactly the same means as if I would simply aggregate the original data df.

> emmeans(model, "group", by="time")
time = 1:
 group    emmean       SE   df lower.CL  upper.CL
 P     104.28571 7.751323 31.3 88.48290 120.08852
 A      92.64286 7.751323 31.3 76.84005 108.44567

time = 2: group emmean SE df lower.CL upper.CL P 94.21429 7.751323 31.3 78.41148 110.01710 A 86.21429 7.751323 31.3 70.41148 102.01710

time = 3: group emmean SE df lower.CL upper.CL P 99.07143 7.751323 31.3 83.26862 114.87424 A 76.92857 7.751323 31.3 61.12576 92.73138

Degrees-of-freedom method: kenward-roger Confidence level used: 0.95

> aggregate(df$depvar~group*time,data=df,mean) group time df$depvar 1 P 1 104.28571 2 A 1 92.64286 3 P 2 94.21429 4 A 2 86.21429 5 P 3 99.07143 6 A 3 76.92857

Shouldn't the estimated marginal means from emmeans take into account the effect of the random intercept? I apologize if this is trivial as I am a novice with linear mixed models.

0 Answers0