I am trying to learn how to derive the distributions of terms in Linear Regression Models (both theoretical model and observed model):
For example here is a linear regression model: $$y = \beta_0 + \beta_1x + \epsilon$$
Theoretical Model:
$$\epsilon \sim N(0, \sigma^2)$$
$$f(\epsilon) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\epsilon^2}{2\sigma^2}}$$
$$y|x \sim N(\beta_0 + \beta_1x, \sigma^2)$$
$$f(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\beta_0 - \beta_1x)^2}{2\sigma^2}}$$
Observed Model:
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1x$$
$$\hat{\epsilon} = y - \hat{y}$$ $$\hat{\epsilon} \sim N(0, \sigma^2)$$
$$\hat{y}|x \sim N(\hat{\beta}_0 + \hat{\beta}_1x, \hat{\sigma}^2 \left( \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right))$$
$$\hat{\beta}_1 \sim N\left(\hat{\beta}_1, \frac{\hat{\sigma}^2}{\sum (x_i - \bar{x})^2}\right)$$
$$\hat{\beta}_0 \sim N\left(\hat{\beta}_0, \hat{\sigma}^2 \left( \frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2} \right)\right)$$
Apparently I have done this incorrectly (see comments: How does simulation help check if model assumptions are met?).
Can someone please show me where this is wrong? We don't define the marginal distribution of $Y$ or $\hat{Y}$, correct?