In what follows I'll adopt the notation from the slides linked in the question.
Note that the slides are missing (a symbol that indicates) matrix transpositions.
$\hat{\boldsymbol \beta} \perp \!\!\! \perp \hat \sigma^2$ means that $\hat{\boldsymbol \beta}$ and $\hat \sigma^2$ are independent random variables.
On slide 17 it is stated that
- the design matrix $\mathbf X$ is deterministic and has full column rank,
- the error vector $\boldsymbol \varepsilon$ follows a $\mathop{\mathcal N_n}\left(0, \sigma^2 I_n\right)$ distribution.
Since $\mathbf Y = \mathbf X \boldsymbol \beta + \boldsymbol \varepsilon$ (slide 15), we have $\mathbf Y \sim \mathop{\mathcal N_n}\left(\mathbf X \boldsymbol \beta, \sigma^2I_n\right)$.
With $\hat{\boldsymbol \varepsilon} \mathrel{:=} \mathbf Y - \mathbf X \hat{\boldsymbol \beta}$, we can write
$$
\begin{pmatrix}
\hat{\boldsymbol \beta}\\
\hat{\boldsymbol \varepsilon}
\end{pmatrix}
=
\begin{pmatrix}
\left(\mathbf X^\mathsf{T} \mathbf X\right)^{-1} \mathbf X^\mathsf{T} \\
I_n - \mathbf X\left(\mathbf X^\mathsf{T} \mathbf X\right)^{-1} \mathbf X^\mathsf{T}
\end{pmatrix}
\mathbf Y,
$$
and observe
$$
\begin{align}
\mathop{\text{Cov}}\left(\hat{\boldsymbol \beta}, \hat{\boldsymbol \varepsilon}\right)
&=
\left(\mathbf X^\mathsf{T} \mathbf X\right)^{-1} \mathbf X^\mathsf{T}\mathop{\text{Cov}}\left(\mathbf Y,\mathbf Y\right) \left(I_n - \mathbf X\left(\mathbf X^\mathsf{T} \mathbf X\right)^{-1} \mathbf X^\mathsf{T}\right)^\mathsf{T} \\
&=
\left(\mathbf X^\mathsf{T} \mathbf X\right)^{-1} \mathbf X^\mathsf{T} \sigma^2 I_n \left(I_n - \mathbf X\left(\mathbf X^\mathsf{T} \mathbf X\right)^{-1} \mathbf X^\mathsf{T}\right)\\
&=
\mathbf 0.
\end{align}
$$
Thus, $\hat{\boldsymbol \beta}$ and $\hat{\boldsymbol \varepsilon}$ are jointly normal and uncorrelated, hence independent.
Since $\hat \sigma^2 = \frac{1}{n-p} \hat{\boldsymbol \varepsilon}^\mathsf{T} \hat{\boldsymbol \varepsilon}$ can be viewed as (Borel measurable) function of $\hat{\boldsymbol \varepsilon}$, we can conclude that $\hat{\boldsymbol \beta}$ and $\hat \sigma^2$ are independent.