0

In linear regression the OLS solution is given by:

$$ \hat{\beta} = (X^TX)^{-1}X^TY $$

I want to show that if you scale the $i$th predictor variable by a constant, then the corresponding $i$th coefficient scales down.

In matrix notation I want to show:
If we scale the $i$th column

$$ X^{*}_{(i)} = a \cdot X_{(i)} $$

where $X_{(i)}$ denotes the $i$th column, then:

$$\hat{\beta}^*_i = \frac{\hat{\beta}_i}{a}$$

0 Answers0