I am conducting a univariate logistic regression to determine factors that predict the success of a surgery. The significant variables were then added to a multiple-regression model. However, the problem is that when I add more than one variable (with any combination), the results become non-significant. I performed backward regression, and the two remaining variables are also non-significant.
Here are the results of the multiple regression I used in R:
Call:
glm(formula = Procedure ~ Zscore.of.the.LVEDD + Left.ventricular.end.diastolic.dimension.in.long.axis.view +
Left.ventricula.end.diatolic.dimension.in.4.chamber.view +
Left.ventricular.end.systolic.dimension.in.4.chamber.view +
Zscore.of.mitral.valve.size, family = binomial(), data = data)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.4556 -0.4070 0.4628 0.7305 1.2196
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.20311 7.15494 0.727 0.467
Zscore.of.the.LVEDD 0.35359 0.29638 1.193 0.233
Left.ventricular.end.diastolic.dimension.in.long.axis.view 0.29624 0.46897 0.632 0.528
Left.ventricula.end.diatolic.dimension.in.4.chamber.view -0.22014 0.47514 -0.463 0.643
Left.ventricular.end.systolic.dimension.in.4.chamber.view 0.03214 0.54687 0.059 0.953
Zscore.of.mitral.valve.size 0.70673 0.46260 1.528 0.127
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 39.429 on 29 degrees of freedom
Residual deviance: 27.898 on 24 degrees of freedom
AIC: 39.898
Number of Fisher Scoring iterations: 5
And here are the results of the backward regression:
Start: AIC=39.9
Procedure ~ Zscore.of.the.LVEDD + Left.ventricular.end.diastolic.dimension.in.long.axis.view +
Left.ventricula.end.diatolic.dimension.in.4.chamber.view +
Left.ventricular.end.systolic.dimension.in.4.chamber.view +
Zscore.of.mitral.valve.size
Df Deviance AIC
- Left.ventricular.end.systolic.dimension.in.4.chamber.view 1 27.902 37.902
- Left.ventricula.end.diatolic.dimension.in.4.chamber.view 1 28.116 38.116
- Left.ventricular.end.diastolic.dimension.in.long.axis.view 1 28.304 38.304
- Zscore.of.the.LVEDD 1 29.488 39.488
<none> 27.898 39.898
- Zscore.of.mitral.valve.size 1 30.723 40.722
Step: AIC=37.9
Procedure ~ Zscore.of.the.LVEDD + Left.ventricular.end.diastolic.dimension.in.long.axis.view +
Left.ventricula.end.diatolic.dimension.in.4.chamber.view +
Zscore.of.mitral.valve.size
Df Deviance AIC
- Left.ventricula.end.diatolic.dimension.in.4.chamber.view 1 28.148 36.148
- Left.ventricular.end.diastolic.dimension.in.long.axis.view 1 28.305 36.305
- Zscore.of.the.LVEDD 1 29.784 37.784
<none> 27.902 37.902
- Zscore.of.mitral.valve.size 1 30.951 38.951
Step: AIC=36.15
Procedure ~ Zscore.of.the.LVEDD + Left.ventricular.end.diastolic.dimension.in.long.axis.view +
Zscore.of.mitral.valve.size
Df Deviance AIC
- Left.ventricular.end.diastolic.dimension.in.long.axis.view 1 28.307 34.307
- Zscore.of.the.LVEDD 1 30.058 36.058
<none> 28.148 36.148
- Zscore.of.mitral.valve.size 1 31.307 37.307
Step: AIC=34.31
Procedure ~ Zscore.of.the.LVEDD + Zscore.of.mitral.valve.size
Df Deviance AIC
<none> 28.307 34.307
- Zscore.of.mitral.valve.size 1 32.291 36.291
- Zscore.of.the.LVEDD 1 32.352 36.352
It is worth mentioning that these variables are highly correlated. How to properly interpret my results in this scenario? Also, please note that the sample size is small (events = 19 and no event = 11).
My questions are: 1- How do I justify point #1 in my paper? OR 2- How do I know if point #2 is correct?
Basically, I need a way to prove that they are significant, but for a reason (point #1) they are not significant in multivariate regression, OR they are actually non-significant, and I need to know how to prove this.
I am really stuck, and this is a very crucial area in my paper.
– yusefsoliman Jan 27 '24 at 23:39