Suppose I have two independent random variables, $X \sim N(\mu_1,\sigma_1^2)$ and $Y \sim N(\mu_2,\sigma_2^2)$ with $\mu_1,\mu_2 > 0$.
How can I compute/estimate
$$ \mathbb{E}\left[\left\lvert \frac{X}{Y} - \frac{\mu_1}{\mu_2}\right\rvert\right] $$
Suppose I have two independent random variables, $X \sim N(\mu_1,\sigma_1^2)$ and $Y \sim N(\mu_2,\sigma_2^2)$ with $\mu_1,\mu_2 > 0$.
How can I compute/estimate
$$ \mathbb{E}\left[\left\lvert \frac{X}{Y} - \frac{\mu_1}{\mu_2}\right\rvert\right] $$