Start with the posterior given $x_1$:
$$P(\theta\mid x_{1})=\frac{P(x_{1}\mid\theta)P(\theta)}{\int_{\theta}P(x_{1}\mid\theta)P(\theta)d\theta}$$
Now the posterior given both $x_1$ and $x_2$:
$$P(\theta\mid x_{2},x_{1})=\frac{P(x_{2}\mid\theta,x_{1})P(\theta\mid x_{1})}{\int_{\theta}P(x_{2}\mid\theta,x_{1})P(\theta\mid x_{1})d\theta}=\dfrac{P(x_{2}\mid\theta,x_{1})\frac{P(x_{1}\mid\theta)P(\theta)}{\int_{\theta}P(x_{1}\mid\theta)P(\theta)d\theta}}{\int_{\theta}P(x_{2}\mid\theta,x_{1})\left(\frac{P(x_{1}\mid\theta)P(\theta)}{\int_{\theta}P(x_{1}\mid\theta)P(\theta)d\theta}\right)d\theta}$$
Because the internal integral is no longer a function of $\theta$, we can remove it outside the external integral in the denominator and it cancels out the same factor in the numerator. Moreover, since $x_{1}$ and $x_{2}$ are independent, we have that:
$$\begin{align}
P(\theta\mid x_{2},x_{1})&=\dfrac{P(x_{2}\mid\theta,x_{1})P(x_{1}\mid\theta)P(\theta)}{\int_{\theta}P(x_{2}\mid\theta,x_{1})P(x_{1}\mid\theta)P(\theta)d\theta}\\
&=\dfrac{P(x_{2},x_{1}\mid\theta)P(\theta)}{\int_{\theta}P(x_{2},x_{1}\mid\theta)P(\theta)d\theta}=P(\theta\mid x) \quad\blacksquare
\end{align}$$