I read a paper where the random variable $z$ is assumed to follow a log-normal distribution.
\begin{equation} \mathbb{E}\left(z^{1-\chi}\right)=\int_{0}^{\infty}z^{1-\chi}\frac{1}{z\sqrt{2\pi s^{2}}}e^{\left(-\frac{\left(\text{ln}z-m\right)^{2}}{2s^{2}}\right)}dz \end{equation}
where
\begin{equation} m=-\frac{1}{2}\text{ln}\left(1+\sigma^{2}\right) \end{equation}
(because $\mu_z=1$)
and
\begin{equation} s^2=\text{ln}\left(1+\sigma^{2}\right) \end{equation} and
The paper directly gives the result
$$\mathbb{E}\left(z^{1-\chi}\right)=\left(1+\sigma^{2}\right)^{\frac{\chi\left(1-\chi\right)}{2}}$$
But I cannot see how this result is derived. What I have tried:
I reformulate the integral by making a transformation of the variable $\text{ln}(z)=q$ as follows
$$\mathbb{E}\left(z^{1-\chi}\right)=\int_{0}^{\infty}e^{-\chi q}\frac{1}{\sqrt{2\pi s^{2}}}e^{\left(-\frac{\left(q-m\right)^{2}}{2s^{2}}\right)}dq$$
and this gives I think
$$\frac{1}{2}\left(1+\sigma^{2}\right)^{\frac{1}{2}\left(1+\chi\right)\chi}erf\left(\frac{2q+\left(1+2\chi\right)\text{ln}\left(1+\sigma^{2}\right)}{2\sqrt{2}\sqrt{\text{ln}\left(1+\sigma^{2}\right)}}\right)$$
But I am stuck at this stage.