I'm using the ols_eigen_cindex function to assess multicollinearity. With these variance proportions:
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_eigen_cindex(model)
Eigenvalue Condition Index intercept disp hp wt qsec
1 4.721487187 1.000000 0.000123237 0.001132468 0.001413094 0.0005253393 0.0001277169
2 0.216562203 4.669260 0.002617424 0.036811051 0.027751289 0.0002096014 0.0046789491
3 0.050416837 9.677242 0.001656551 0.120881424 0.392366164 0.0377028008 0.0001952599
4 0.010104757 21.616057 0.025805998 0.777260487 0.059594623 0.7017528428 0.0024577686
5 0.001429017 57.480524 0.969796790 0.063914571 0.518874831 0.2598094157 0.9925403056
what does it mean to have a a high variance for the intercept and qsec in dimension 5? Is it a problem? Or should I only look for high values among the predictors, excluding the intercept?