In statistics, it's pretty straightforward to write a formula for the joint probability distribution of two random Normal Variables:
\begin{align*} x_1 &\sim \mathcal{N}(\mu_1, \sigma_1^2) \\ x_2 &\sim \mathcal{N}(\mu_2, \sigma_2^2) \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &\sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}\right) \end{align*}
Or here is another way to write this that shows this formula in terms of correlations: \begin{align*} x_1 &\sim \mathcal{N}(\mu_1, \sigma_1^2) \\ x_2 &\sim \mathcal{N}(\mu_2, \sigma_2^2) \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &\sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}\right) \end{align*}
And here it is for a N variable case:
\begin{align*} x_1 &\sim \mathcal{N}(\mu_1, \sigma_1^2) \\ x_2 &\sim \mathcal{N}(\mu_2, \sigma_2^2) \\ &\vdots \\ x_n &\sim \mathcal{N}(\mu_n, \sigma_n^2) \\ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} &\sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{bmatrix}\right) \end{align*}
I am trying to understand why no one ever does this for Non-Normal variables (after spending the weekend trying to read about this, I could not find a single example of this for the Non-Normal case).
For example, suppose I had many Exponential random variables (note that the variance of a exponential random variable $x_i$ ~ $exp(\lambda_i)$ is ${1}/{\lambda_i}$):
\begin{align*} X_1 &\sim \text{Exp}(\lambda_1) \\ X_2 &\sim \text{Exp}(\lambda_2) \\ &\vdots \\ X_n &\sim \text{Exp}(\lambda_n) \end{align*}
How come we can't write:
\begin{align*} X_1 &\sim \text{Exp}(\lambda_1) \\ X_2 &\sim \text{Exp}(\lambda_2) \\ &\vdots \\ X_n &\sim \text{Exp}(\lambda_n) \\ \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} &\sim \text{Exp}\left(\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}, \begin{bmatrix} \frac{1}{\lambda_1^2} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \frac{1}{\lambda_2^2} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \frac{1}{\lambda_n^2} \end{bmatrix}\right) \end{align*}
Mathematically, why is this incorrect?
And this links shows us how to calculate the covariance of two exponential variables: https://math.stackexchange.com/questions/4101399/finding-covariance-from-exponential-distribution
How come we can do this for the Normal Distribution and not the Exponential Distribution? In my engineering final project, we need to simulate correlated failure times for machines that statistically depend on one another. I am just trying to understand the mathematical//statistical reason why this is so easy for a Multivariate Normal but not for a Multivariate Exponential.
Any hints?
copulaas the key(word) to your question. – Xi'an Nov 06 '23 at 07:37