I need to do a regression in R, I want to predict CHI from TETA, first I've made a plot of my data and I obtained

my data are
CHI<- c(19.2430 , 14.4949, 11.6516, 9.7592, 8.4091, 7.3973, 6.6104, 5.9807, 5.4650, 5.0345, 4.6695, 4.3558, 4.0830, 3.8434, 3.6310, 3.4414, 3.2708, 3.1163, 2.9757, 2.8471, 2.7287, 2.6194, 2.5181, 2.4237, 2.3356, 2.2530, 2.1754, 2.1022, 2.0331, 1.9675, 1.9053, 1.8461, 1.7895, 1.7355, 1.6837 , 1.6341, 1.5863 , 1.5404, 1.4960, 1.4532, 1.4117, 1.3716, 1.3326, 1.2947 , 1.2579, 1.2220, 1.1869, 1.1527, 1.1193, 1.0865, 1.0544, 1.0228, 0.9919, 0.9614, 0.9314, 0.9018, 0.8726, 0.8438, 0.8152, 0.7870, 0.7590, 0.7312, 0.7036, 0.6762, 0.6489, 0.6217, 0.5946, 0.5676, 0.5405, 0.5135, 0.4864, 0.4592, 0.4320, 0.4046, 0.3772, 0.3495, 0.3217, 0.2936, 0.2653, 0.2368, 0.2080, 0.1790, 0.1497, 0.1201, 0.0903, 0.0603, 0.0302)
TETA<- c(0.0524, 0.0698, 0.0873, 0.1047, 0.1222, 0.1396, 0.1571, 0.1745, 0.1920, 0.2094, 0.2269, 0.2443, 0.2618, 0.2793, 0.2967, 0.3142, 0.3316, 0.3491, 0.3665, 0.3840, 0.4014, 0.4189, 0.4363, 0.4538, 0.4712, 0.4887, 0.5061, 0.5236, 0.5411, 0.5585, 0.5760, 0.5934, 0.6109, 0.6283, 0.6458, 0.6632, 0.6807, 0.6981, 0.7156, 0.7330, 0.7505, 0.7679, 0.7854, 0.8029, 0.8203, 0.8378, 0.8552, 0.8727, 0.8901, 0.9076, 0.9250, 0.9425, 0.9599, 0.9774, 0.9948, 1.0123, 1.0297, 1.0472, 1.0647, 1.0821, 1.0996, 1.1170, 1.1345, 1.1519, 1.1694, 1.1868, 1.2043, 1.2217, 1.2392, 1.2566, 1.2741, 1.2915, 1.3090, 1.3265, 1.3439, 1.3614, 1.3788, 1.3963, 1.4137, 1.4312, 1.4486, 1.4661, 1.4835, 1.5010, 1.5184, 1.5359, 1.5533)
(I know they are very few)
In order to do a linear regression I've tried to transform my variables, in particular, after some attempts I tried with this code:
chi<-log(chi+3)
teta<-log(teta)
because in that way I have this plot

then
df<- data.frame(chi,teta)
model<- lm(chi ~ teta, data=df)
and I obtain

and my residuals are

How can I improve this model? Should I try with a nonlinear regression?