I want to compare the coefficients of the two linear regressions:
$$ \begin{array}{c} y_{ij} &=& \beta_0 + \beta_1 X_{j} + u_{ij} \\ y_{j} &=& \alpha_0 + \alpha_1 X_{j} + u_{j} \\ y_{j} &=& \frac{1}{N_j} \sum_{i=1} ^ {N_j} y_{ij} \end{array} $$
so that the second equation differs only by using the mean of group $j$ instead of individual observations $y_{ij}$ as the dependent variable. Is there an easy way to show that $\hat{\beta}_1 = \hat{\alpha}_1$, where hat denotes OLS estimate?