To add to @MichaelHardy 's answer the "internal" integral is an incomplete gamma:
$$\int_c^{\infty } \lambda \exp (-\lambda u) (\lambda u)^{j-1} \, du=\Gamma(j,c \lambda)$$
So the desired probability is
$$ \Pr\left(\sum_{i=1}^nX_iY_i > c \right) =\sum_{j=1}^n {\binom{n}{j}}p^j (1-p)^{n-j} \Gamma(j,c \lambda)/\Gamma(j)$$
Note that the sum on the righthand side starts at $j=1$ rather than $j=0$ as
$$\Pr\left(\sum_{i=1}^n X_i Y_i > c \,\, \Bigg\vert\,\, \sum_{i=1}^n Y_i=0\right)=0$$
If one doesn't have access to an incomplete gamma function, then the following is an equivalent result
$$\ \Pr\left(\sum_{i=1}^nX_iY_i > c \right) =e^{-c \lambda} \sum _{j=1}^n \binom{n}{j} p^j (1-p)^{n-j} \sum _{i=0}^{j-1} \frac{(c \lambda )^i}{i!}$$
As a partial check suppose $n=7$, $p=1/3$, $\lambda=2$, and $c=1$. The formula gives $\frac{348049}{98415 e^2}\approx 0.478619$. Some R code to perform simulations:
p <- 1/3
c <- 1
lambda <- 2
n <- 7
nsim <- 1000000
set.seed(12345)
z <- rowSums(matrix(rexp(nnsim, lambda)rbinom(n*nsim, 1, p), nrow=nsim))
prob <- length(z[z>c])/nsim
[1] 0.478865
For small values of $n$ one can construct the following table:
