If I am doing a binomial GLM with a proportion as an outcome--how do I interpret the model coefficients? I understand how it is done when the outcome is an event (e.g., 0/1), but it is less clear to me how to interpret it in this case. Is it still the log odds that the outcome (i.e., proportion) is 1?
A silly example below predicting population-level happiness based on number of televisions. My question is: how do I understand/interpret the coefficient for n_with_tv (0.003524932)?
set.seed(1)
mod_df = data.frame(
island = 1:10,
pop = sample(1000, 10)
)
mod_df$n_happy = round(mod_df$pop * sample(seq(.2, .8, .01), 10))
mod_df$prop_happy = mod_df$n_happy / mod_df$pop
mod_df$n_with_tv = round(mod_df$pop * (mod_df$prop_happy + rnorm(10, sd = .10)))
mod_df$prop_with_tv = mod_df$n_with_tv / mod_df$pop
mod_df
#> island pop n_happy prop_happy n_with_tv prop_with_tv
#> 1 1 836 585 0.6997608 518 0.6196172
#> 2 2 679 353 0.5198822 275 0.4050074
#> 3 3 129 52 0.4031008 48 0.3720930
#> 4 4 930 725 0.7795699 697 0.7494624
#> 5 5 509 310 0.6090373 289 0.5677800
#> 6 6 471 344 0.7303609 356 0.7558386
#> 7 7 299 194 0.6488294 167 0.5585284
#> 8 8 270 78 0.2888889 90 0.3333333
#> 9 9 978 254 0.2597137 133 0.1359918
#> 10 10 187 52 0.2780749 48 0.2566845
mod_glm = glm(prop_happy ~ n_with_tv,
weights = pop,
family = "binomial",
data = mod_df)
summary(mod_glm)$coef
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.924823050 0.0551110306 -16.78109 3.356306e-63
#> n_with_tv 0.003524932 0.0001494939 23.57910 6.315129e-123
Possibly related: