I'm trying to solve a conundrum but can't figure out where I'm making the mistake.
Let me define the Linear model as $$ \begin{align} y &= X \beta + \epsilon \\ \end{align} $$
Where $X$ is $N \times k$. Now we define our OLS estimates as $$ \begin{align} \hat{\beta}^{OLS} &= ( X^{T} X)^{-1}X^{T}y \\\\ \hat{y}^{OLS} &= X\hat{\beta}^{OLS} = X( X^{T} X)^{-1}X^{T}y \\\\ \hat{\epsilon}^{OLS} &= y - \hat{y}^{OLS} = (I - X( X^{T} X)^{-1}X^{T})y \end{align} $$ defining $P$ as the projection matrix $$ P = X( X^{T} X)^{-1}X^{T} $$ and $M$ as the annihilator matrix $$ M = I - P $$
I can write $$ \hat{\epsilon}^{OLS} = M y = M (X \beta + \epsilon ) = M \epsilon $$
Assuming normal distribution of the residual terms
$$ \epsilon \sim\mathcal{N} ( 0, \sigma^{2}I ) $$
This would give us $$ \epsilon^T \left( Var(\epsilon) \right)^{-1} \epsilon = \frac{1}{\sigma^2} \epsilon^T \epsilon \sim \chi^2 (N) $$
We should also get $$ \hat{\epsilon}^{OLS} \sim \mathcal{N} ( 0, \sigma^{2} M^TM ) = \mathcal{N} ( 0, \sigma^{2} M ) $$
Now comes the confusion. We know that
$$ \frac{1}{\sigma^2} \left( \hat{\epsilon}^{OLS} \right)^T\left( \hat{\epsilon}^{OLS} \right) \sim \chi^2 (N-k) $$
We can see this without going into too much detail as
$$ \begin{align} \frac{1}{\sigma^2} \left( \hat{\epsilon}^{OLS} \right)^T\left( \hat{\epsilon}^{OLS} \right) &= \frac{1}{\sigma^2} \left( \epsilon^T M^T M \epsilon \right) \\\\ &= \frac{1}{\sigma^2} \left( \epsilon^T M \epsilon \right) \\\\ &\sim \chi^2(N-k) \end{align} $$ To get to the last step, you can show that $M$ has a $rank$ of $N-k$.
More detail if required can be found here (Why is RSS distributed chi square times n-p?)
However If something is normally distributed with a mean of 0 then
$$ \begin{align} \left( \hat{\epsilon}^{OLS} \right)^T \left( Var(\hat{\epsilon}^{OLS}) \right)^{-1}\left( \hat{\epsilon}^{OLS} \right) \sim \chi^2 (N) \end{align} $$
Investigating this I get the following $$ \begin{align} \left( \hat{\epsilon}^{OLS} \right)^T \left( Var(\hat{\epsilon}^{OLS}) \right)^{-1}\left( \hat{\epsilon}^{OLS} \right) &= \epsilon^{T}M^T\left(\sigma^2 M\right)^{-1}M\epsilon \\\\ &= \frac{1}{\sigma^2} \epsilon^{T}M^TM^{-1}M\epsilon \\\\ &= \frac{1}{\sigma^2} \epsilon^{T}M\epsilon \\\\ &\sim \chi^2(N-k) \end{align} $$
So now I'm not sure where I'm making the mistake. I get this contradiction in my notes. Any reference material would be very helpful.