I've got the following data with a logistic regression model
# data
score_dicho score
<lgl> <dbl>
1 FALSE 175
2 FALSE 175
3 FALSE 175
4 FALSE 175
5 FALSE 189
6 FALSE 189
7 FALSE 189
8 FALSE 189
9 FALSE 210
10 FALSE 210
data <- structure(list(score_dicho = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE), score = c(175, 175, 175, 175, 189, 189, 189, 189, 210, 210, 210, 210, 221, 221, 221, 221, 235, 235, 235, 235, 247, 247, 247, 247, 275, 275, 275, 275, 278, 278, 278, 278, 288, 288, 288, 288, 317, 317, 317, 317, 329, 329, 329, 329, 348, 348, 348, 348, 362, 362, 362, 362, 375, 375, 375, 375, 387, 387, 387, 387, 403, 403, 403, 403, 412, 412, 412, 412, 431, 431, 431, 431, 445, 445, 445, 445, 451, 451, 451, 451, 462, 462, 462, 462, 472, 472, 472, 472, 485, 485, 485, 485, 497, 497, 497, 497, 503, 503, 503, 503, 512, 512, 512, 512, 525, 525, 525, 525, 535, 535, 535, 535, 547, 547, 547, 547, 556, 556, 556, 556, 578, 578, 578, 578, 593, 593, 593, 593, 601, 601, 601, 601, 614, 614, 614, 614, 628, 628, 628, 628, 650, 650, 650, 650)), row.names = c(NA, -144L), class = c("tbl_df", "tbl", "data.frame"))
mod_log <- glm(score_dicho ~ score, data = data, family = "binomial")
summary(mod_log)
Call:
glm(formula = score_dicho ~ score, family = "binomial", data = data)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -16.354969 4.024865 -4.063 4.83e-05 ***
score 0.026506 0.006896 3.844 0.000121 ***
How to compute the standard error of the estimates of the variable $$ - coef(Intercept)/coef(score)$$ ?
Or the confidence intervals.
NB : I'd like another method than the bootstrap.