I am running a set of mixed models and comparing them by AIC to select the best models but I am having singularity problems in some of them. It is clear to me from here and here among other references that singularity problems indicate that the random effects structure is too complex to be supported by the data. But, from the following models (see below), I am having singularity problems with the one named cort2 but not with the one named cort3, it seems counterintuitive that the model without interaction has overfitting problems and the one that tests the interaction does not have them. Any ideas about the reason for this problem?
library(lme4)
cort1<-lmer(CORT ~ etapa + (1|ID),dat = d_e_filter)
cort2<- blmer (CORT ~ etapa + sex + (1|ID), dat=d_e_filter, REML= FALSE)
cort3 <-lmer (CORT ~ etapa + sex + etapa*sex + (1|ID), dat=d_e_filter,
REML=FALSE)
In this case, is possible to work with cort1 and cort3 ignoring the cort2model? With the same data set I am exploring the same models with other response variables without overfitting problems, and they will be reported all together. Here is an example
Models:
ldf1<- LDF ~ etapa + (1 | ID)
ldf2<- LDF ~ etapa + sex + (1 | ID)
ldf3<- LDF ~ etapa + sex + sex * etapa + (1 | ID)
Would be correct to report in the same research the first case cort1 and cort2 and in the second case ldf1 ldf2 and ldf3? or would be better to go directly to the blme package for all the models instead of using the blme package?
Here is part of the data set:
etapa ID sex Lymph CORT Testo LDF granulocytes lymphocytes monocytes AbSRBC il.1b
1 a 6201 m 2.00 0.53 1.54 1.65 4510 2740 0 8 530
2 a 6202 m 36.51 0.69 1.78 3.51 4153 1086 97 6 721
3 a 6203 m 35.14 0.26 1.12 5.16 6862 1331 0 6 716
4 a 6204 m 15.83 0.74 1.14 1.47 4497 2723 346 2 311
5 a 6205 m 18.73 1.81 NA 1.93 7143 3700 0 2 113
6 a 6207 m 13.91 0.65 1.34 2.27 4693 2066 0 6 115
7 a 6208 m 33.06 0.65 1.95 2.11 4060 1676 251 4 65
8 a 6209 h 0.00 3.18 0.01 0.95 4964 4326 872 3 66
9 a 6210 m 4.59 0.69 1.78 1.88 5113 2455 258 6 280
10 a 6211 m 14.25 1.09 1.46 1.96 3468 1578 190 5 118
11 a 6213 m 33.41 0.39 1.53 2.00 5896 2147 801 4 698
12 a 6214 m 41.25 0.15 0.57 2.48 9811 3860 90 9 707
13 a 6215 m 36.23 0.28 0.88 3.63 7909 2181 0 7 690
14 a 6216 m 31.63 0.57 0.22 2.08 9754 4696 0 4 613
15 a 6217 m 17.63 1.68 1.29 1.86 4148 2130 103 1 56
16 a 6218 m 13.87 0.51 2.19 2.56 4172 1424 208 4 337
17 a 6219 m 17.03 0.14 1.28 3.22 6333 1965 0 4 274
18 a 6220 m 6.45 0.64 1.63 2.04 4551 2099 128 6 594
19 a 6221 m 11.13 0.30 1.05 1.00 3430 3184 230 2 415
20 a 6222 m 35.00 0.81 0.95 4.30 4020 885 50 6 690
21 a 6223 m 18.98 0.59 1.58 1.62 3346 1832 231 3 70
22 a 6224 m 21.23 0.39 1.10 2.83 3886 1219 155 4 415
23 a 6225 m 5.31 1.75 0.30 2.73 4522 1450 205 3 78
24 a 6226 m NA NA NA NA NA NA NA NA NA
25 a 6227 m 11.41 0.41 1.58 1.19 3533 2749 214 6 146
26 a 6228 m 0.00 0.58 1.94 2.54 4924 1767 174 6 321
27 a 6229 m 7.82 0.58 1.38 1.79 4436 2204 268 8 228
28 a 6230 m 0.00 0.45 0.64 1.39 4452 2941 267 7 615
29 a 6231 m 19.30 0.53 3.36 1.61 4452 2491 267 3 285
30 a 6232 m 36.94 0.55 1.62 2.15 4211 1210 748 4 675
31 a 6233 m 13.73 0.52 1.59 2.20 3265 1340 145 3 315
32 a 6234 m 0.00 0.82 1.30 2.62 4567 1578 162 4 623
33 a 6235 m 39.12 0.19 1.11 5.15 8503 1500 150 6 702
34 a 6236 m 11.28 NA NA 4.54 10436 2301 0 NA NA
35 a 6237 m 19.96 0.57 1.30 1.46 3647 2203 294 4 528
36 a 6238 m 29.29 0.36 1.21 3.10 3783 1130 90 5 728
37 a 6239 m 13.27 0.47 1.67 2.57 3135 1095 124 3 401
38 a 6240 m 18.13 0.36 1.16 1.28 3763 2796 140 4 369
39 a 6241 m 19.14 NA NA 2.56 2663 955 84 NA NA
40 a 6242 m 18.23 0.46 1.89 2.99 5820 1804 140 4 64
41 a 6243 m 12.47 0.58 1.51 2.17 3835 1544 222 5 123
42 a 6244 m 12.36 0.70 1.44 3.17 6562 1813 255 6 594
43 a 6245 m 26.52 0.82 1.15 1.35 3704 2454 289 5 415
44 a 6246 m 31.25 0.31 1.52 3.37 4755 1305 108 5 682
45 a 6248 m 51.29 0.83 0.68 3.09 4507 589 868 4 612
46 a 6249 m 0.00 0.42 2.28 2.07 4025 1874 69 5 598
47 a 6250 m 26.53 0.60 1.66 0.76 4067 4728 602 2 75
48 a 6274 m 46.00 0.37 0.83 2.82 4040 1247 186 6 719
49 a 7404 h NA NA NA NA NA NA NA NA NA
50 a 7405 h 23.16 0.89 0.09 1.48 6184 3625 566 2 142
51 a 7406 h 10.63 0.65 0.11 0.80 4387 4956 554 5 440
52 a 7407 h 25.64 0.73 0.07 1.04 9139 7578 1210 3 340
blmerwithlmerresults? – utobi Jun 09 '23 at 06:47