I am using boruta_py, Python implementation of the Boruta algorithm, with a random forest estimator.
model = RandomForestClassifier(n_estimators=5000, n_jobs=-1)
boruta = BorutaPy(model, max_iter=10, verbose=2, random_state=1)
And I fit boruta like so:
boruta.fit(np.array(X_train), np.array(Y_train)) # X_train is a DataFrame
transform input
X_train_br = boruta.transform(np.array(X_train))
X_test_br = boruta.transform(np.array(X_test))
then fit the RF estimator
model.fit(X_train_br, Y_train)
My input has 240 features, i.e.:
>>> X_train.shape
(67092, 240)
Fitting boruta for max_iter = 10, but the strange thing is no single feature is classified Confirmed or Rejected:
...
building tree 1000 of 1000
[Parallel(n_jobs=-1)]: Done 1000 out of 1000 | elapsed: 4.2min finished
Iteration: 5 / 10
Confirmed: 0
Tentative: 240
Rejected: 0
....
What am I doing incorrect here?