what's the correct way to quantify the loss of information we have when we approximate the likelihood from multivariate normal distribution with a full covariance matrix to a product of univariate Gaussian pdf ? I am doing some Bayesian inference and i am comparing the results i get when i use the multivariate distribution with the one i get when i assume the data points independents. The results are very similar but i would like to know if there is some procedure that can justify this approximation.
i have read i can use the Kullback-Leibler divergence
like in KL divergence between two multivariate Gaussians
$$ \begin{aligned} KL &= \int \left[ \frac{1}{2} \log\frac{|\Sigma_2|}{|\Sigma_1|} - \frac{1}{2} (x-\mu_1)^T\Sigma_1^{-1}(x-\mu_1) + \frac{1}{2} (x-\mu_2)^T\Sigma_2^{-1}(x-\mu_2) \right] \times p(x) dx \\ &= \frac{1}{2} \log\frac{|\Sigma_2|}{|\Sigma_1|} - \frac{1}{2} \text{tr}\ \left\{E[(x - \mu_1)(x - \mu_1)^T] \ \Sigma_1^{-1} \right\} + \frac{1}{2} E[(x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2)] \\ &= \frac{1}{2} \log\frac{|\Sigma_2|}{|\Sigma_1|} - \frac{1}{2} \text{tr}\ \{I_d \} + \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma_2^{-1} (\mu_1 - \mu_2) + \frac{1}{2} \text{tr} \{ \Sigma_2^{-1} \Sigma_1 \} \\ &= \frac{1}{2}\left[\log\frac{|\Sigma_2|}{|\Sigma_1|} - d + \text{tr} \{ \Sigma_2^{-1}\Sigma_1 \} + (\mu_2 - \mu_1)^T \Sigma_2^{-1}(\mu_2 - \mu_1)\right]. \end{aligned} $$
is it correct if i reduce this solution for 2 multivariate Gaussian in the solution i want by considering $\Sigma_2$ as a diagonal matrix ?