CONSEQUENCES OF HETEROSCEDASTICITY
$\textbf{1}$. The presence of heteroscedasticity does not make the OLS estimates of coefficients biased, but it causes the variances of OLS estimates to increase.
$\textbf{2}$. The presence of heteroscedasticity causes the OLS to ${\color{Red} {\text{underestimate}}}$ the variances of the coefficients.
I don't understand why the OLS to underestimate the variances of the coefficients in $\textbf{2}$.
The following is my thoughts :
Let $\mathbf{X}$ has full column rank, $$\text{the homoscedasticity model} (1):\begin{cases} \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon \\ E(\varepsilon)=\mathbf{0}, \operatorname{Var}(\varepsilon)=\sigma^{2} \mathbf{I} \end{cases};$$
$$\text{the heteroscedasticity model} (2):\begin{cases} \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon \\ E(\varepsilon)=\mathbf{0}, \operatorname{Var}(\varepsilon)=\sigma^{2} \mathbf{V} \end{cases},\text{where} \mathbf{V} \text{ is diagonal but with unequal diagonal elements.}$$
$\\$ When $\text{the heteroscedasticity model} (2)$ is ture, then the weighted least-squares estimator of $\hat{\boldsymbol{\beta}}_{WLS}$ is an unbiased estimator of $\boldsymbol{\beta}$ and $$\operatorname{Var}(\hat{\boldsymbol{\beta}}_{WLS})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}.$$
$\\$ The ordinary least-squares estimator $ \hat{\boldsymbol{\beta}}_{OLS}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ is no longer appropriate in model $(2)$.If the ordinary least squares is used in this case, the resulting estimator $\hat{\boldsymbol{\beta}}_{OLS}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ is still unbiased. However, the ordinary least-squares estimator is no longer a minimum variance estimator. That is, the covariance matrix of the ordinary least-squares estimator is $$\operatorname{Var}(\hat{\boldsymbol{\beta}}_{OLS})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$$ and the covariance matrix of the weighted least-squares estimator $\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1}$ gives smaller variances for the regression coefficients. So the OLS should overestimates the variances of the coefficients.
