I have an ARMA(2,1) model of the following form,
$$y_t=a_1y_{t-1}+a_2y_{t-2}+\epsilon_t+b_1\epsilon_{t-1}$$
Re-arranging and using lag operators:
$$(1-a_1L-a_2L^2)y_t=(1+b_1L)\epsilon_t$$
solving for $y_t$
$$y_t=\frac{(1+b_1L)}{1-(a_1L+a_2L^2)}\epsilon_t$$
Using the definition of an infinite geometric series
$$(1+b_1L)\sum^\infty_{j=0}(a_1L+a_2L^2)^j\epsilon_t$$
$$(1+b_1L)\sum^\infty_{j=0}(a_1\epsilon_{t-1}+a_2\epsilon_{t-2})^j$$
$$\sum^\infty_{j=0}(a_1\epsilon_{t-1}+a_2\epsilon_{t-2})^j+\sum^\infty_{j=0}(a_1b_1\epsilon_{t-1}+a_2b_1\epsilon_{t-2})^j$$
Using this solution to compute the variance:
$$Var(y_t)=Var(\sum^\infty_{j=0}(a_1\epsilon_{t-1}+a_2\epsilon_{t-2})^j+\sum^\infty_{j=0}(a_1b_1\epsilon_{t-1}+a_2b_1\epsilon_{t-2})^j)$$
$$=\sum^\infty_{j=0}Var(a_1^j\epsilon_{t-1}^j+a_2^j\epsilon_{t-2}^j)+\sum^\infty_{j=0}Var(a_1^jb_1^j\epsilon_{t-1}^j+a_2^jb_1^j\epsilon_{t-2}^j)$$
$$=\sum^\infty_{j=0}(a_1^{2j}+a_2^{2j})Var(\epsilon_{t-1}^j+\epsilon_{t-2}^j)+\sum^\infty_{j=0}(a_1^{2j}b_1^{2j}+a_2^{2j}b_1^{2j})Var(\epsilon_{t-2}^j+\epsilon_{t-3}^j)$$
I think I must have made a mistake along the way, I don't know what to do with the term $Var(\epsilon_{t-1}^j+\epsilon_{t-2}^j)$ any help would be much appreciated.