A comment to this question suggests that the OLS estimate of linear model parameters is unbiased, even when the error term is Cauchy. Given that Cauchy distributions lack an expected value, I am skeptical that the parameter estimates have an expected value (though I am on board with their expected value being the true parameter values if they do have an expected value).
Do the OLS parameter estimates even have an expected value when the error term is Cauchy? If so, is the bias equal to zero?
$$ y_i = \beta_0 + \beta_1x_{i, 1} + \dots + \beta_px_{i, p} +\epsilon_i\\ \epsilon_1,\dots,\epsilon_n\overset{iid}{\sim}t_1\\ \implies\\ \mathbb E\left[ (X^TX)^{-1}X^Ty \right] = \beta\\? $$