1

I have a problem that I can't solution. Let $\mathbf{X}=\{X_1,X_2,\ldots,X_n\}\sim\mathrm{Uniform}(0,\theta)$ and we have $H_0:\theta=\theta_0$ and $H_1:\theta>\theta_0$. We reject the $H_0$ when $X_{(n)}>c$. Find $\mathbf{p\textbf{-}value}$.
I know that $\mathbf{p\textbf{-}value}=\mathbb{Pr}_{\theta_0}(T(\mathbf{X})>T(\mathbf{x}))$ where $\mathbf{x}$ is the observed value of $\mathbf{X}$, but next I don't know what is observed value and how to find $T(\mathbf{x})$.

Richard Hardy
  • 67,272

0 Answers0