The question was inspired by these comments to my other question. I have proved this proposition some time ago and could not find any issues in it.
It consists of two parts:
1. Where does my proof of $\overline{\xi_n}=\frac{\xi_1+...+\xi_n}{n}\xrightarrow{d} \mathcal{N}(a, \frac{\sigma^2}{n})$ break down?
2. Why (if this proposition is incorrect) this fact is being widely used in lots of lecture notes which I found before and how one can correctly interpret corollaries from CLT? I guess I will ask this question as another post after I will understand the first part.
First part.
I will assume that we know from CLT that If $\xi_1,...,\xi_n$ are identically distributed independent random variables with $\mathbb{E}\xi_1=a, \mathbb{V}ar\xi_1=\sigma^2$ then
$\frac{\xi_1+...+\xi_n - na}{\sqrt{n\sigma^2}} \xrightarrow{d} \eta,$ where $\eta \sim \mathcal{N}(0,1)$, so by definition of convergence in distribution,
$\forall x \in \mathbb{R}$, $\mathbb{P}[\frac{\xi_1+...+\xi_n - na}{\sqrt{n\sigma^2}}\leq x] \xrightarrow{n\to+\infty} \mathbb{P}[\eta \leq x].$
So we have $\mathbb{P}[\overline{\xi_n}\leq x]=\mathbb{P}[\frac{\sigma}{\sqrt{n}}\frac{\xi_1+...+\xi_n-na}{\sqrt{n\sigma^2}}+a \leq x] = \mathbb{P}[\frac{\xi_1+...+\xi_n - na}{\sqrt{n\sigma^2}}\leq\frac{x-a}{\sigma}\sqrt{n}]$.
But then, $\mathbb{P}[\frac{\xi_1+...+\xi_n - na}{\sqrt{n\sigma^2}}\leq\frac{x-a}{\sigma}\sqrt{n}] \xrightarrow{n\to+\infty}\mathbb{P}[\eta \le \frac{x-a}{\sigma}\sqrt{n}] = \mathbb{P}[\frac{\sigma\eta}{\sqrt{n}}+a\leq x]$
But we know if $\eta \sim \mathcal{N}(0,1),$ then $\frac{\sigma\eta}{\sqrt{n}}+a$ has distribution $\zeta \sim$ $\mathcal{N}(a, \frac{\sigma^2}{n})$.
This means that $\mathbb{P}[\overline{\xi_n}\leq x] \xrightarrow{n\to+\infty}$ $\mathbb{P[\zeta\leq x]}$, (I denote this proposition as *) and by definition of convergence in distribution,
$\overline{\xi_n}=\frac{\xi_1+...+\xi_n}{n}\xrightarrow{d} \mathcal{N}(a, \frac{\sigma^2}{n})$ (I denote this proposition by **).