Suppose $\xi$ is a random variable such that $\mathbb{P}(\xi = k) = 0.3\frac{2^ke^{-2}}{k!} + 0.45\frac{3^ke^{-3}}{k!} + 0.25\frac{\frac{1}{2^k}e^{-\frac{1}{2}}}{k!}$ and $ran(\xi)=\{0,1,2,3,4,5...\}$.
So, by the definition of mathematical expectation you have:
$\mathbb{E}\xi = \sum^{+\infty}_{k=0}k\cdot\mathbb{P}(\xi = k) =\\ \sum^{+\infty}_{k=0}k(0.3\frac{2^ke^{-2}}{k!} + 0.45\frac{3^ke^{-3}}{k!} + 0.25\frac{\frac{1}{2^k}e^{-\frac{1}{2}}}{k!})$
To proceed with this sum you just need to recal, that for any real $z$, $e^z = \sum^{+\infty}_{k=0}\frac{z^k}{k!}$ and we will try to make this sum similar to this expression.
$\sum^{+\infty}_{k=0}k(0.3\frac{2^ke^{-2}}{k!} + 0.45\frac{3^ke^{-3}}{k!} + 0.25\frac{\frac{1}{2^k}e^{-\frac{1}{2}}}{k!}) = \\ \sum^{+\infty}_{k=1}0.3\frac{2^ke^{-2}}{(k-1)!} + \sum^{+\infty}_{k=1}0.45\frac{3^ke^{-3}}{(k-1)!} + \sum^{+\infty}_{k=1}0.25\frac{\frac{1}{2^k}e^{-\frac{1}{2}}}{(k-1)!} = \\= 0.3\cdot e ^{-2}\cdot 2\sum^{+\infty}_{k=1}\frac{2^{k-1}}{(k-1)!} + 0.45\cdot e^{-3} \cdot 3\sum^{+\infty}_{k=1}\frac{3^{k-1}}{(k-1)!} + \\ + \ 0.25\cdot e^{-\frac{1}{2}} \cdot \frac{1}{2}\sum^{+\infty}_{k=1}\frac{\frac{1}{2^{k-1}}}{(k-1)!} = 0.3\cdot e ^{-2}\cdot 2 \cdot e^{2} + 0.45\cdot e^{-3} \cdot \cdot e^{3} \cdot 3 + 0.25\cdot e^{-\frac{1}{2}} \cdot \frac{1}{2} \cdot e^{\frac{1}{2}} = 0.6 + 1.35 + 0.125 = 2.075$.
So, $\mathbb{E}\xi = 2.075$.
To find variance, you just need to use this formula:
$\mathbb{V}ar\xi = \mathbb{E}[\xi^2] - (\mathbb{E}\xi)^2$, so you need to find $\mathbb{E}[\xi^2]$.
I hope you now understand how to find $\mathbb{E}[\xi^2]$ but I will you give a trick which is frequently being used to find second moment of poisson random variable.
$\mathbb{E}[\xi^2] = \sum^{+\infty}_{k=0}k^2\cdot\mathbb{P}(\xi = k) =\\ = \sum^{+\infty}_{k=0}(k^2+0)\cdot\mathbb{P}(\xi = k) = \sum^{+\infty}_{k=0}(k^2-k+k)\cdot\mathbb{P}(\xi = k) = \sum^{+\infty}_{k=0}(k^2-k)\cdot\mathbb{P}(\xi = k) + \sum^{+\infty}_{k=0}k\cdot\mathbb{P}(\xi = k) = \sum^{+\infty}_{k=0}(k^2-k)\cdot\mathbb{P}(\xi = k) + \mathbb{E}\xi$.
Now to find the first sum you need to use the same method as I used to find $\mathbb{E}\xi$ and you will be done.