can you help find the maximum (analytically) of the following posterior pdf?
$p(\theta|x) = \frac{\alpha}{\sqrt{2\pi}}e^{-\frac{1}{2}(\theta-x)^2} + \frac{1-\alpha}{\sqrt{2\pi}}e^{-\frac{1}{2}(\theta+x)^2}$
In particular, I am interested in values $\alpha=\frac{1}{2}$ and $\alpha=\frac{3}{4}$. If I draw $p(\theta|x)$ it is easy to find the maximum at $\theta=\pm x$ for $\alpha=\frac{1}{2}$, and $\theta=x$ for $\alpha=\frac{3}{4}$, but I am not able to show it analytically.
Thank you!