I made a lmer with an interaction between odour and concentration and random effect of date. I'm getting very high df in the emmeans output below. It's actually higher than the number of observations in my df (954). Why? Should I be concerned?
Also, can I specify "side = '>'" when I do the dunnett trt.vs.ctrl instead of what I am doing here?
summary1 <- emmeans(mod1, specs = trt.vs.ctrl ~ conc|odour)
summary(summary1)
test(summary1, side = ">",adjust = "tukey", type = "response")
$contrasts
odour = A:
contrast estimate SE df t.ratio p.value
0.01 - 0 0.290 0.252 292 1.149 0.3320
0.1 - 0 0.594 0.214 933 2.775 0.0084
1 - 0 0.506 0.256 876 1.980 0.0702
odour = B:
contrast estimate SE df t.ratio p.value
0.01 - 0 0.770 0.253 379 3.046 0.0037
0.1 - 0 0.706 0.259 302 2.721 0.0103
1 - 0 0.852 0.265 328 3.214 0.0022
odour = C:
contrast estimate SE df t.ratio p.value
0.01 - 0 0.328 0.184 718 1.782 0.1085
0.1 - 0 0.658 0.230 275 2.858 0.0069
1 - 0 0.759 0.282 332 2.694 0.0111
odour = D:
contrast estimate SE df t.ratio p.value
0.01 - 0 0.536 0.250 245 2.146 0.0484
0.1 - 0 0.659 0.292 381 2.261 0.0361
1 - 0 0.284 0.283 283 1.004 0.4034
odour = E:
contrast estimate SE df t.ratio p.value
0.01 - 0 0.157 0.215 910 0.733 0.5470
0.1 - 0 0.508 0.256 291 1.988 0.0699
1 - 0 0.693 0.361 440 1.918 0.0814
odour = F:
contrast estimate SE df t.ratio p.value
0.01 - 0 0.496 0.220 899 2.251 0.0365
0.1 - 0 1.282 0.213 983 6.018 <.0001
1 - 0 1.144 0.232 978 4.922 <.0001
odour = G:
contrast estimate SE df t.ratio p.value
0.01 - 0 0.312 0.242 263 1.288 0.2698
0.1 - 0 0.952 0.225 509 4.229 <.0001
1 - 0 0.997 0.204 473 4.881 <.0001
Degrees-of-freedom method: kenward-roger
P value adjustment: sidak method for 3 tests
P values are right-tailed
emmeansisn't for the fledgling analyst. The KR df expression is complicated and there's no guarantee it's less than $n$. – AdamO Mar 08 '23 at 20:14