I'm having a lot of issues trying to derive an equation for the relative error in the following problem. Someone has used the following incorrect formula to perform Neyman allocation $n_{h,e}=n\frac{W_hS_{U_h}^2}{\sum_{h=1}^{H}W_hS_{U_h}^2}$ instead of the correct formula given by $n_{h,o}=n\frac{W_hS_{U_h}}{\sum_{h=1}^{H}W_hS_{U_h}}$. I need to find the relative error of the variance of $\bar y_{\pi}$, ie. a simplified equation with no double sums of $\frac{V_{STSRS,e}(\bar y_{\pi})-V_{STSRS,o}(\bar y_{\pi})}{V_{STSRS,o}(\bar y_{\pi})}$
Asked
Active
Viewed 21 times