Call:
lm(formula = formal_engaged_replaced ~ setting_interest + setting_trust +
setting_contact + setting_confidence + setting_visibility +
network_close_network + network_help_neighbour + network_help_orgs +
personal_sex + poverty_replaced + personal_education, data = train_model)
Residuals:
Min 1Q Median 3Q Max
-0.6084 -0.3168 -0.1750 0.4730 0.9894
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.694967 0.172963 4.018 8.15e-05 ***
setting_interest 0.082989 0.036994 2.243 0.0259 *
setting_trust -0.095590 0.039447 -2.423 0.0162 *
setting_contact 0.006969 0.040477 0.172 0.8635
setting_confidence 0.023480 0.041886 0.561 0.5757
setting_visibility 0.090994 0.040536 2.245 0.0258 *
network_close_network 0.001323 0.004591 0.288 0.7734
network_help_neighbour -0.008214 0.030320 -0.271 0.7867
network_help_orgs 0.032154 0.032971 0.975 0.3306
personal_sex 0.016613 0.059559 0.279 0.7806
poverty_replaced 0.017542 0.034989 0.501 0.6167
personal_education 0.035840 0.020845 1.719 0.0870 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.4294 on 212 degrees of freedom
Multiple R-squared: 0.11, Adjusted R-squared: 0.06385
F-statistic: 2.383 on 11 and 212 DF, p-value: 0.008439
I'm very confused with interpreting the variable, as the Multiple R-squared: 0.11, does it mean that it's bad ?
Also when running the multiple regression is it recommended to check for the assumption as my data is categorical its doesn't meet any assumption. and I just coded for regression without any transformation, is there any way to do it?