I've been trying to derive the CDF of the lognormal distribution. I got this far but now I'm stuck.
$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x\frac{1}{z}e^{-t^2}dz$
where $t = \frac{\ln(z)-\mu}{\sigma\sqrt{2}}$
so $z = e^{\sigma t \sqrt{2} + \mu}$
$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x\frac{1}{e^{\sigma t \sqrt{2}}}e^{-t^2}d(e^{\sigma t \sqrt{2}})$
$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\sigma t \sqrt{2}} e^{-t^2}d(e^{\sigma t \sqrt{2}})$
I hope someone can point me in the right direction or link me a full derivation since I haven't been able to find one.