I'm creating a linear model for an ANOVA to look for main effects and interactions. When I flip around the order of the interaction term, I get different statistical outputs (see below).
fat <- lm(percentpre~geno*transplant, data=subset(fat3w, phase=="avg" & transp.g=="0.8"))
anova(fat)
Response: percentpre
Df Sum Sq Mean Sq F value Pr(>F)
geno 1 7.806 7.806 2.7858 0.1076
transplant 1 84.062 84.062 30.0008 1.09e-05 ***
geno:transplant 1 0.084 0.084 0.0299 0.8641
Residuals 25 70.050 2.802
Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
versus
fat <- lm(percentpre~transplant*geno, data=subset(fat3w, phase=="avg" & transp.g=="0.8"))
anova(fat)
Response: percentpre
Df Sum Sq Mean Sq F value Pr(>F)
transplant 1 90.420 90.420 32.2699 6.481e-06 ***
geno 1 1.448 1.448 0.5167 0.4789
transplant:geno 1 0.084 0.084 0.0299 0.8641
Residuals 25 70.050 2.802
Signif. codes: 0 ‘*’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
It doesn't make a difference significance-wise, but I'm worried about the main effects which do (particularly the geno effect) which seems to change quite a bit. Any explanations as to why this might be?