Here's my code :
mammal.pca_no.corr <- prcomp(PCA_mammal_dataset_no.corr, scale = T)
summary(mammal.pca)
mammal_pca_no.corr$rotation
And here's the output:
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
Standard deviation 2.6653 1.4929 0.53917 0.35689 0.31104 0.29074 0.21260 0.12012 0.08043 0.04318
Proportion of Variance 0.7104 0.2229 0.02907 0.01274 0.00967 0.00845 0.00452 0.00144 0.00065 0.00019
Cumulative Proportion 0.7104 0.9333 0.96234 0.97508 0.98475 0.99320 0.99772 0.99917 0.99981 1.00000
PC1 PC2 PC3 PC4 PC5 PC6
adult_body_mass_g 0.2898569 -0.70308588 -0.375681954 0.1141424 -0.40480411 0.3219029
longevity_y 0.4473037 -0.01703924 0.509790194 0.7227587 -0.02265857 -0.1298056
adult_svl_cm 0.4151987 -0.42151638 -0.003714323 -0.3193357 0.61382852 -0.4137142
female_maturity_d 0.4521501 0.25324957 0.180901772 -0.2579211 0.24483079 0.7564616
male_maturity_d 0.4497617 0.22521078 0.161112601 -0.4673997 -0.62155166 -0.3409520
weaning_d 0.3698475 0.46135518 -0.735037761 0.2786222 0.11209906 -0.1410220
And here's the autoplot: [![enter image description here][1]][1]
Based on the output, I'll probably select PC1 and PC2. For PC2, the most prominent variable is the adult_body_mass, but what about PC1? All variables contribute to it relatively equally except for adult_body_mass and weaning_d. How should I interpret this?
